aweSOMscreeplot | R Documentation |
The screeplot, helps deciding the optimal number of superclasses. Available for both PAM and hierarchical clustering.
aweSOMscreeplot( som, nclass = 2, method = c("hierarchical", "pam"), hmethod = c("complete", "ward.D2", "ward.D", "single", "average", "mcquitty", "median", "centroid") )
som |
|
nclass |
number of superclasses to be visualized in the screeplot. Default is 2. |
method |
Method used for clustering. Hierarchical clustering ("hierarchical") and Partitioning around medoids ("pam") can be used. Default is hierarchical clustering. |
hmethod |
For hierarchicical clustering, the clustering method, by
default "complete". See the |
No return value, called for side effects.
## Build training data dat <- iris[, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")] ### Scale training data dat <- scale(dat) ## Train SOM ### Initialization (PCA grid) init <- somInit(dat, 4, 4) ok.som <- kohonen::som(dat, grid = kohonen::somgrid(4, 4, 'hexagonal'), rlen = 100, alpha = c(0.05, 0.01), radius = c(2.65,-2.65), init = init, dist.fcts = 'sumofsquares') ## Group cells into superclasses (PAM clustering) superclust <- cluster::pam(ok.som$codes[[1]], 2) superclasses <- superclust$clustering aweSOMscreeplot(ok.som, method = 'hierarchical', hmethod = 'complete', nclass = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.