Nothing
## usethis namespace: start
#' @importFrom rlang .data
#' @importFrom Rcpp sourceCpp
#' @useDynLib bartcs, .registration = TRUE
## usethis namespace: end
NULL
#' bartcs: Bayesian Additive Regression Trees for Confounder Selection
#'
#' Fit Bayesian Regression Additive Trees (BART) models to
#' select true confounders from a large set of potential confounders and
#' to estimate average treatment effect. For more information, see
#' Kim et al. (2023) \doi{10.1111/biom.13833}.
#'
#' Functions in `bartcs` serve one of three purposes.
#' \enumerate{
#' \item Functions for fitting: `separate_bart()` and `single_bart()`.
#' \item Functions for summary: `summary()` and `plot()`.
#' \item Utility function for OpenMP: `count_omp_thread()`.
#' }
#' The code of BART model are based on the 'BART' package by
#' Sparapani et al. (2021) under the GPL license, with modifications.
#' The modifications from the `BART` package include (but are not limited to):
#' \itemize{
#' \item Add CHANGE step.
#' \item Add Single and Separate Model.
#' \item Add causal effect estimation.
#' \item Add confounder selection.
#' }
#'
#' @references
#' Sparapani R, Spanbauer C, McCulloch R (2021).
#' “Nonparametric Machine Learning and Efficient Computation
#' with Bayesian Additive Regression Trees: The BART R Package.”
#' *Journal of Statistical Software*, 97(1), 1–66.
#' \doi{10.18637/jss.v097.i01}
#'
#' Kim, C., Tec, M., & Zigler, C. M. (2023).
#' Bayesian Nonparametric Adjustment of Confounding, *Biometrics*
#' \doi{10.1111/biom.13833}
#' @keywords internal
"_PACKAGE"
#' @name bartcs-package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.