View source: R/b_reaction_time.R
b_reaction_time | R Documentation |
Bayesian model for comparing reaction times.
b_reaction_time(
t,
s,
priors = NULL,
warmup = 1000,
iter = 2000,
chains = 4,
seed = NULL,
refresh = NULL,
control = NULL,
suppress_warnings = TRUE
)
t |
a vector containing reaction times for each measurement. |
s |
a vector containing subject indexes. Starting index should be 1 and the largest subject index should equal the number of subjects. |
priors |
List of parameters and their priors - b_prior objects. You can put a prior on the mu_m (mean), sigma_m (variance of mu_m), mu_s (variance), sigma_s (variance of mu_s), mu_l (mean of the exponent factor) and sigma_l (variance of mu_l) parameters (default = NULL). |
warmup |
Integer specifying the number of warmup iterations per chain (default = 1000). |
iter |
Integer specifying the number of iterations (including warmup, default = 2000). |
chains |
Integer specifying the number of parallel chains (default = 4). |
seed |
Random number generator seed (default = NULL). |
refresh |
Frequency of output (default = NULL). |
control |
A named list of parameters to control the sampler's behavior (default = NULL). |
suppress_warnings |
Suppress warnings returned by Stan (default = TRUE). |
An object of class 'reaction_time_class'
# priors
mu_prior <- b_prior(family="normal", pars=c(0, 100))
sigma_prior <- b_prior(family="uniform", pars=c(0, 500))
lambda_prior <- b_prior(family="uniform", pars=c(0.05, 5))
# attach priors to relevant parameters
priors <- list(c("mu_m", mu_prior),
c("sigma_m", sigma_prior),
c("mu_s", sigma_prior),
c("sigma_s", sigma_prior),
c("mu_l", lambda_prior),
c("sigma_l", sigma_prior))
# generate data
s <- rep(1:5, 20)
rt <- emg::remg(100, mu=10, sigma=1, lambda=0.4)
# fit
fit <- b_reaction_time(t=rt, s=s, priors=priors, chains=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.