View source: R/bayesian_cure_rate_model.R
summary.predict_bayesCureModel | R Documentation |
This function produces MCMC summaries for an object of class predict_bayesCureModel
.
## S3 method for class 'predict_bayesCureModel'
summary(object, ...)
object |
An object of class |
... |
Other options passed to the |
A list with the following entries
survival |
MCMC summaries (quantiles) for the survival function. |
cured_probability |
MCMC summaries (quantiles) for the conditional cured probability. |
cumulative_hazard |
MCMC summaries (quantiles) for the cumulative hazard function. |
hazard_rate |
MCMC summaries (quantiles) for the hazard rate function. |
Panagiotis Papastamoulis
Papastamoulis and Milienos (2024). Bayesian inference and cure rate modeling for event history data. TEST doi: 10.1007/s11749-024-00942-w.
cure_rate_MC3
# simulate toy data just for cran-check purposes
set.seed(10)
n = 4
# censoring indicators
stat = rbinom(n, size = 1, prob = 0.5)
# covariates
x <- matrix(rnorm(2*n), n, 2)
# observed response variable
y <- rexp(n)
# define a data frame with the response and the covariates
my_data_frame <- data.frame(y, stat, x1 = x[,1], x2 = x[,2])
# run a weibull model with default prior setup
# considering 2 heated chains
fit1 <- cure_rate_MC3(survival::Surv(y, stat) ~ x1 + x2, data = my_data_frame,
promotion_time = list(distribution = 'exponential'),
nChains = 2,
nCores = 1,
mcmc_cycles = 3, sweep=2)
newdata <- data.frame(x1 = c(0.2,-1), x2 = c(-1,0))
# return predicted values at tau = c(0.5, 1)
my_prediction <- predict(fit1, newdata = newdata,
burn = 0, tau_values = c(0.5, 1))
my_summary <- summary(my_prediction, quantiles = c(0.1,0.9))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.