View source: R/mainFunctions.R
plotVol | R Documentation |
Plotting method for volatilities of time series.
plotVol(mY, vol, ts.names=paste("TS_", 1:ncol(mY), sep=""), colors = c("grey","red"), ...)
mY |
a matrix of the data ( |
vol |
a matrix ( |
ts.names |
a vector of length |
colors |
a vector with name of the colors for plotting the returns and volatilities. |
... |
additional arguments for |
No return value
Ricardo Sandes Ehlers, Jose Augusto Fiorucci and Francisco Louzada
Fioruci, J.A., Ehlers, R.S., Andrade Filho, M.G. Bayesian multivariate GARCH models with dynamic correlations and asymmetric error distributions, Journal of Applied Statistics, 41(2), 320–331, 2014a. <doi:10.1080/02664763.2013.839635>
Fioruci, J.A., Ehlers, R.S., Louzada, F. BayesDccGarch - An Implementation of Multivariate GARCH DCC Models, ArXiv e-prints, 2014b. https://ui.adsabs.harvard.edu/abs/2014arXiv1412.2967F/abstract.
bayesDccGarch-package
, bayesDccGarch
, plot.bayesDccGarch
data(DaxCacNik)
mY = DaxCacNik
out = bayesDccGarch(mY)
## The code
plotVol(mY, out$H[,c("H_1,1","H_2,2","H_3,3")], c("DAX","CAC40","NIKKEI"))
## gives the result of ##
plot(out)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.