ppc_plots | R Documentation |
bayesplot
packagePlots of Rhat statistics, ratios of effective sample size to total sample size, and autocorrelation of MCMC draws.
ppc_dens(object, ...) ## S4 method for signature 'bayesGAMfit' ppc_dens(object, draws = NULL, ...) ## S4 method for signature 'posteriorPredictObject' ppc_dens(object, ...) ppc_dens_overlay(object, ...) ## S4 method for signature 'bayesGAMfit' ppc_dens_overlay(object, draws = NULL, ...) ## S4 method for signature 'posteriorPredictObject' ppc_dens_overlay(object, ...) ppc_hist(object, ...) ## S4 method for signature 'bayesGAMfit' ppc_hist(object, draws = NULL, ...) ## S4 method for signature 'posteriorPredictObject' ppc_hist(object, ...) ppc_boxplot(object, ...) ## S4 method for signature 'bayesGAMfit' ppc_boxplot(object, draws = NULL, ...) ## S4 method for signature 'posteriorPredictObject' ppc_boxplot(object, ...) ppc_freqpoly(object, ...) ## S4 method for signature 'bayesGAMfit' ppc_freqpoly(object, draws = NULL, ...) ## S4 method for signature 'posteriorPredictObject' ppc_freqpoly(object, ...) ppc_ecdf_overlay(object, ...) ## S4 method for signature 'bayesGAMfit' ppc_ecdf_overlay(object, draws = NULL, ...) ## S4 method for signature 'posteriorPredictObject' ppc_ecdf_overlay(object, ...)
object |
an object of class |
... |
optional additional arguments to pass to the |
draws |
An integer indicating the number of draws to return. The default and maximum number of draws is the size of the posterior sample. |
These functions call various plotting functions from the bayesplot
package, which returns a list including ggplot2
objects.
bayesplot
package documentationppc_hist(object, draws=NULL, ...)
A separate histogram estimate is displayed for y and each dataset (row) in yrep. For these plots yrep should therefore contain only a small number of rows.
ppc_boxplot(object, draws=NULL, ...)
A separate box and whiskers plot is displayed for y and each dataset (row) in yrep. For these plots yrep should therefore contain only a small number of rows.
ppc_freqpoly(object, draws=NULL, ...)
A separate shaded frequency polygon is displayed for y and each dataset (row) in yrep. For these plots yrep should therefore contain only a small number of rows.
ppc_dens(object, draws=NULL, ...)
A separate smoothed kernel density estimate is displayed for y and each dataset (row) in yrep. For these plots yrep should therefore contain only a small number of rows.
ppc_dens_overlay(object, draws=NULL, ...)
Kernel density estimates of each dataset (row) in yrep
are overlaid, with the distribution of y
itself on top (and in a darker shade).
ppc_ecdf_overlay(object, draws=NULL, ...)
Empirical CDF estimates of each dataset (row) in yrep
are overlaid, with the distribution of y
itself on top (and in a darker shade).
Gabry, Jonah and Mahr, Tristan (2019). bayesplot: Plotting for Bayesian Models. https://mc-stan.org/bayesplot/
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A (2019). Visualization in Bayesian Workflow. Journal of the Royal Statistical Society: Series A. Vol 182. Issue 2. p.389-402.
Gelman, A. and Rubin, D. (1992) Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7(4) 457-472.
Gelman, A., et. al. (2013) Bayesian Data Analysis. Chapman and Hall/CRC.
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378.
f <- bayesGAM(weight ~ np(height), data = women, family = gaussian, iter=500, chains = 1) ppc_dens(f, draws=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.