Nothing
#' @md
#' @title Bayesian Projection of Migration
#'
#' @description Collection of functions for making probabilistic projections of net migration rate for all countries of the world,
#' using a Bayesian hierarchical model (BHM) and the United Nations demographic time series. The model can be also applied
#' to user-defined data for other locations, such as subnational units.
#' Methodological details are provided in Azose & Raftery (2015). The projected rates can be used
#' as input to population projections generated via the \pkg{bayesPop} package.
#'
#' @author Jon Azose, Hana Sevcikova and Adrian Raftery
#'
#' Maintainer: Hana Sevcikova <hanas@uw.edu>
#'
#' @docType package
#' @import coda truncnorm wpp2019 data.table
#' @import grDevices graphics stats utils bayesTFR
#' @importFrom utils data
#'
#' @details The package is implemented in a similar way as the \pkg{bayesTFR}
#' package and thus, many functions have their equivalents in \pkg{bayesTFR}.
#' The main functions of the package are:
#' * \code{\link{run.mig.mcmc}}: Runs a Markov Chain Monte Carlo (MCMC) simulation.
#' It results in posterior samples of the model parameters.
#' * \code{\link{mig.predict}}: Using the posterior parameter samples, trajectories of future
#' net migration rates are generated for all countries or given locations.
#'
#' The following functions can be used to analyze results:
#' * \code{\link{mig.trajectories.plot}}: Shows the posterior trajectories for a given location, including the median and given probability intervals.
#' * \code{\link{mig.trajectories.table}}: Shows a tabular form of the posterior trajectories for a given location.
#' * \link{mig.map}, \link{mig.ggmap} and \link{mig.map.gvis}: Show a world map of migration rates
#' for a given projection or observed period, or for country-specific parameter estimates.
#' * \code{\link{mig.partraces.plot}} and \code{\link{mig.partraces.cs.plot}}: Plot the MCMC traces
#' of country-independent parameters and country-specific parameters, respectively.
#' * \code{\link{mig.pardensity.plot}} and \code{\link{mig.pardensity.cs.plot}}: Plot the posterior density of the
#' country-independent parameters and country-specific parameters, respectively.
#' * \code{\link{summary.bayesMig.mcmc.set}}: Summary method for the MCMC results.
#' * \code{\link{summary.bayesMig.prediction}}: Summary method for the prediction results.
#'
#' For MCMC diagnostics, function \code{\link{mig.coda.list.mcmc}} creates an object of type
#' \dQuote{mcmc.list} that can be used with the \pkg{coda} package.
#' Furthermore, function \code{\link{mig.diagnose}} analyzes the MCMCs using the
#' Raftery diagnostics implemented in the \pkg{coda} package and gives information
#' about parameters that did not converge.
#'
#' Existing results can be accessed using the \code{\link{get.mig.mcmc}} (estimation) and
#' \code{\link{get.mig.prediction}} (prediction) functions.
#' Existing convergence diagnostics can be accessed using the \code{\link{get.mig.convergence}} and
#' \code{\link{get.mig.convergence.all}} functions.
#'
#' Historical data on migration rates are taken from the \pkg{wpp2019} (default),
#' \href{https://github.com/PPgp/wpp2024}{\pkg{wpp2024}} , \href{https://github.com/PPgp/wpp2022}{\pkg{wpp2022}}
#' or \pkg{wpp2017} package,
#' depending on users settings. Alternatively, users can input their own data. These can be either
#' 5-year or annual time series. An example file with historical annual US migration rates is included
#' in the package. Its usage is shown in the Example of \code{\link{mig.predict}}.
#'
#' @note As this package has been designed for simulating migration on a national level, many
#' functions use arguments and terminology related to countries. However, a \dQuote{country}
#' is to be interpreted as any location included in the simulation.
#' @examples
#' \dontrun{
#' # Run a real simulation (can take long time)
#' sim.dir <- tempfile()
#' m <- run.mig.mcmc(nr.chains = 4, iter = 10000, thin = 10, output.dir = sim.dir,
#' verbose.iter = 1000)
#'
#' # Prediction for all countries
#' # (use argument save.as.ascii for passing predictions into bayesPop)
#' pred <- mig.predict(sim.dir = sim.dir, nr.traj = 1000, burnin = 1000)
#'
#' # Explore results
#' summary(pred, country = "Germany")
#' mig.trajectories.plot(pred, country = "Germany", nr.traj = 50)
#'
#' # Check convergence diagnostics
#' mig.diagnose(sim.dir, burnin = 4000, thin = 1)
#'
#' unlink(sim.dir, recursive = TRUE)
#' # For annual projections on sub-national level, see ?mig.predict.
#' }
#'
#' @references Azose, J. J., & Raftery, A. E. (2015).
#' Bayesian probabilistic projection of international migration. Demography, 52(5), 1627-1650.
#' \doi{10.1007/s13524-015-0415-0}.
#'
#' Azose, J.J., Ševčíková, H., Raftery, A.E. (2016): Probabilistic population projections with migration uncertainty.
#' Proceedings of the National Academy of Sciences 113:6460–6465. \doi{10.1073/pnas.1606119113}.
#' @name bayesMig-package
#' @aliases bayesMig
"_PACKAGE"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.