Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
out.width='100%',
fig.align = "center",
fig.width = 7,
fig.height = 5,
message = FALSE,
warning = FALSE
)
## ---- echo=F, out.width="100%", fig.align='center'---------------------------
knitr::include_graphics("modeltime_ecosystem.jpg")
## ---- echo=F, out.width="100%", fig.align='center', fig.cap="The Modeltime Workflow"----
knitr::include_graphics("modeltime_workflow.jpg")
## -----------------------------------------------------------------------------
library(tidymodels)
library(bayesmodels)
library(modeltime)
library(tidyverse)
library(timetk)
library(lubridate)
# This toggles plots from plotly (interactive) to ggplot (static)
interactive <- FALSE
## -----------------------------------------------------------------------------
# Data
m750 <- m4_monthly %>% filter(id == "M750")
## -----------------------------------------------------------------------------
m750 %>%
plot_time_series(date, value, .interactive = interactive)
## -----------------------------------------------------------------------------
# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)
## ---- message=TRUE------------------------------------------------------------
# Model 1: arima ----
model_fit_arima<- arima_reg(non_seasonal_ar = 0,
non_seasonal_differences = 1,
non_seasonal_ma = 1,
seasonal_period = 12,
seasonal_ar = 0,
seasonal_differences = 1,
seasonal_ma = 1) %>%
set_engine(engine = "arima") %>%
fit(value ~ date, data = training(splits))
## ---- message=TRUE------------------------------------------------------------
# Model 2: arima_boost ----
model_fit_arima_bayes<- sarima_reg(non_seasonal_ar = 0,
non_seasonal_differences = 1,
non_seasonal_ma = 1,
seasonal_period = 12,
seasonal_ar = 0,
seasonal_differences = 1,
seasonal_ma = 1,
pred_seed = 100) %>%
set_engine(engine = "stan") %>%
fit(value ~ date, data = training(splits))
## -----------------------------------------------------------------------------
plot(model_fit_arima_bayes$fit$models$model_1)
## -----------------------------------------------------------------------------
model_fit_naive <- random_walk_reg(seasonal_random_walk = TRUE, seasonal_period = 12) %>%
set_engine("stan") %>%
fit(value ~ date + month(date), data = training(splits))
## -----------------------------------------------------------------------------
plot(model_fit_naive$fit$models$model_1)
## ---- paged.print = FALSE-----------------------------------------------------
models_tbl <- modeltime_table(
model_fit_arima,
model_fit_arima_bayes,
model_fit_naive
)
models_tbl
## ---- paged.print = FALSE-----------------------------------------------------
calibration_tbl <- models_tbl %>%
modeltime_calibrate(new_data = testing(splits))
calibration_tbl
## -----------------------------------------------------------------------------
calibration_tbl %>%
modeltime_forecast(
new_data = testing(splits),
actual_data = m750
) %>%
plot_modeltime_forecast(
.legend_max_width = 25, # For mobile screens
.interactive = interactive
)
## -----------------------------------------------------------------------------
calibration_tbl %>%
modeltime_accuracy() %>%
table_modeltime_accuracy(
.interactive = interactive
)
## ---- paged.print = F, message=F----------------------------------------------
refit_tbl <- calibration_tbl %>%
modeltime_refit(data = m750)
refit_tbl %>%
modeltime_forecast(h = "3 years", actual_data = m750) %>%
plot_modeltime_forecast(
.legend_max_width = 25, # For mobile screens
.interactive = interactive
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.