optimal_model_space | R Documentation |
Given a dataset and an initial value for parameters, initializes a model space with parameters equal to initial value for each model. Then for each model performs a numerical optimization and finds parameters which maximize the likelihood.
optimal_model_space(
df,
timestamp_col,
entity_col,
dep_var_col,
init_value,
exact_value = TRUE,
run_parallel = FALSE,
control = list(trace = 2, maxit = 10000, fnscale = -1, REPORT = 100, scale = 0.05)
)
df |
Data frame with data for the SEM analysis. |
timestamp_col |
The name of the column with time stamps |
entity_col |
Column with entities (e.g. countries) |
dep_var_col |
Column with the dependent variable |
init_value |
The value with which the model space will be initialized. This will be the starting point for the numerical optimization. |
exact_value |
Whether the exact value of the likelihood should be
computed ( |
run_parallel |
If |
control |
a list of control parameters for the optimization which are
passed to optim. Default is
|
List of parameters describing analyzed models
library(magrittr)
data_prepared <- economic_growth[,1:7] %>%
feature_standardization(timestamp_col = year, entity_col = country) %>%
feature_standardization(timestamp_col = year, entity_col = country,
time_effects = TRUE, scale = FALSE)
model_space <- optimal_model_space(df = data_prepared, dep_var_col = gdp,
timestamp_col = year, entity_col = country,
init_value = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.