characterize: Dataset characterization framework

Description Usage Arguments Value References See Also Examples

View source: R/dataset-characterization.R

Description

Implementation of a map/reduce approach to characterize a dataset with given dataset characteristics.

Usage

1
characterize(x, y, verbose = FALSE, index = NULL, ...)

Arguments

x

A dataset object

y

A DatasetCharacteristics object; e.g., StatlogCharacteristics

verbose

Show information during execution

index

Characterize only a subset

...

Ignored

Value

The characterization matrix (1 row and as many columns as characteristics

References

See Eugster et al. (2010) in citation("benchmark").

See Also

Other dataset.characterization: StatlogCharacteristics; as.dataset; plot.DatasetCharacterization

Examples

1
2
3
data("iris")
  ds <- as.dataset(Species ~ ., iris)
  characterize(ds, StatlogCharacteristics)

Example output

Loading required package: proto
Loading required package: ggplot2
Loading required package: relations

Attaching package: 'relations'

The following object is masked from 'package:ggplot2':

    sym

Loading required package: psychotools

Attaching package: 'benchmark'

The following object is masked from 'package:psychotools':

    paircomp

Warning message:
replacing previous import 'ggplot2::sym' by 'relations::sym' when loading 'benchmark' 
Loading required package: e1071
Loading required package: entropy
     input.n input.attr input.factor.attr input.factor...entropy
[1,]     150          4                 0                     NA
     input.factor...bin input.numeric.attr input.numeric.mac
[1,]                  0                  4         0.9006997
     input.numeric...skewness input.numeric...kurtosis response.factor...cl
[1,]               0.06273198               -0.8105361                    3
     response.factor...entropy input2response.numeric2factor.fcc
[1,]                  4.923427                         0.9848209
     input2response.numeric2factor.frac1 input2response.factor2factor.mi
[1,]                           0.9912126                              NA
     input2response.factor2factor.enattr input2response.factor2factor.nsratio
[1,]                                  NA                                   NA

benchmark documentation built on May 30, 2017, 5:20 a.m.