Nothing
#' Asymptotic Covariance Matrix of the
#' Sample Covariance Matrix
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @return Returns a matrix.
#'
#' @param object Object.
#' Result of [.ProcessLM()].
#' @param type Character string.
#' If `type = "mvn"`, use the multivariate normal-theory approach.
#' If `type = "adf"`, use the asymptotic distribution-free approach.
#'
#' @family Beta Delta Functions
#' @keywords betaDelta gamma internal
#' @noRd
.Gamma <- function(object,
type) {
if (type == "adf") {
gammacapmvn_consistent <- .GammaN(
sigmacap = object$sigmacap_consistent,
pinv_of_dcap = object$pinv_of_dcap
)
gammacap <- .GammaADFUnbiased(
gammacapadf_consistent = .GammaADFConsistent(
d = .DofMat(
object$x,
center = colMeans(object$x),
n = object$n,
k = object$k
),
vechsigmacap_consistent = object$vechsigmacap_consistent,
n = object$n
),
gammacapmvn_consistent = gammacapmvn_consistent,
vechsigmacap_consistent = object$vechsigmacap_consistent,
n = object$n
)
}
if (type == "mvn") {
gammacap <- .GammaN(
sigmacap = object$sigmacap,
pinv_of_dcap = object$pinv_of_dcap
)
}
return(gammacap)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.