Nothing
#' Jacobian Matrix of the Half-Vectorization
#' of the Model-Implied Covariance Matrix
#' with Respect to the Parameter Vector
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @param lm_process Ouput of the `.ProcessLM()` function.
#' @param rsq Numeric.
#' R-squared.
#' If `rsq = NULL`, the kth element in `theta` is \eqn{R^{2}}.
#' If `rsq = Numeric`, the kth element in `theta` is \eqn{\sigma^{2}}.
#' @param fixed_x Logical.
#' If `fixed_x = TRUE`, treat the regressors as fixed.
#' If `fixed_x = FALSE`, treat the regressors as random.
#'
#' @return Returns a matrix.
#'
#' @family Beta Monte Carlo Functions
#' @keywords mc internal
#' @noRd
.J <- function(lm_process,
rsq = NULL,
fixed_x) {
return(
.JacobianVechSigmaWRTTheta(
beta = lm_process$beta,
sigmacapx = lm_process$sigmacap[
2:lm_process$k,
2:lm_process$k,
drop = FALSE
],
q = lm_process$q,
p = lm_process$p,
rsq = rsq,
fixed_x = fixed_x
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.