Nothing
#' Standardized Partial Regression Slopes of
#' \eqn{\boldsymbol{\Sigma}}
#'
#' Calculate standardized partial regression slopes
#' from the covariance matrix.
#'
#' @details Let the covariance matrix of \eqn{Y} and
#' \eqn{\mathbf{X} = \left\{ X_{1}, \dots, \X_{p} \right\}}
#' be partitioned as follows
#' \deqn{
#' \boldsymbol{\Sigma}
#' =
#' \left(
#' \begin{array}{cc}
#' \sigma_{Y}^{2}
#' &
#' \boldsymbol{\sigma}_{Y \mathbf{X}} \\
#' \boldsymbol{\sigma}_{\mathbf{X} Y}
#' &
#' \boldsymbol{\Sigma}_{\mathbf{X} \mathbf{X}}
#' \end{array}
#' \right) .
#' }
#' The corresponding correlation matrix is given by
#' \deqn{
#' \mathbf{P}
#' =
#' \mathrm{diag} \left( \boldsymbol{\sigma}^{-1} \right)
#' \boldsymbol{\Sigma}
#' \mathrm{diag} \left( \boldsymbol{\sigma}^{-1} \right)
#' }
#' where \eqn{\boldsymbol{\sigma}} is the vector of standard deviations.
#' The vector of standardized partial regression slopes
#' is given by
#' \deqn{
#' \boldsymbol{\beta}^{\ast}
#' =
#' \mathbf{P}_{\mathbf{X} \mathbf{X}}^{-1}
#' \boldsymbol{\rho}_{Y \mathbf{X}} .
#' }
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @param sigmacap Numeric matrix.
#' \eqn{\boldsymbol{\Sigma}}.
#' Covariance matrix of
#' \eqn{\left\{ Y, X_{1}, \dots, X_{p} \right\}}.
#' @param q Numeric vector.
#' Inverse of the standard deviation vector of
#' \eqn{\left\{ Y, X_{1}, \dots, X_{p} \right\}}.
#' @param k Positive integer.
#' Dimension of the `k` by `k` covariance matrix.
#'
#' @return Returns a vector.
#' @family Standardized Slopes Functions
#' @keywords strRegression slopesstd internal
#' @noRd
.BetaStarofSigma <- function(sigmacap,
q,
k) {
return(
.BetaStarofRho(
rhocap = .RhoofSigma(
x = sigmacap,
q = q
),
k = k
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.