View source: R/bgev_functions.R
bgev.support | R Documentation |
When the shape parameter xi
is different from zero, the support
is truncated either at the left or at the right side of the real.
Considering the support is particularly useful to estimating momoments and
to compute the likelihood function.
bgev.support(mu, sigma, xi, delta)
mu |
location parameter |
sigma |
shape parameter |
xi |
shape parameter |
delta |
bimodality parameter |
It returns a vector representing the interval for which the density function is not null.
The Support of the bimodal GEV distribution is given by the following equation:
\begin{cases}
x \in \mathbb {R} : x \geq \mathbf{sng} \left(-\frac{\sigma}{\xi}\right) | \frac{\sigma}{\xi}| ^{\frac{1}{\delta+1}}+\mu, & \xi \neq 0 \\
x \in \mathbb {R}, & \xi =0.
\end{cases}
Cira Otiniano Author [aut], Yasmin Lirio Author [aut], Thiago Sousa Developer [cre]
Otiniano, Cira EG, et al. (2023). A bimodal model for extremes data. Environmental and Ecological Statistics, 1-28. http://dx.doi.org/10.1007/s10651-023-00566-7
# Computes the support of a specific bimodal GEV distribution
support = bgev.support(mu=1, sigma=10, xi=0.3, delta=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.