Nothing
#' Scalable Bayesian Disease Mapping Models for High-Dimensional Data
#'
#' @description This package implements several (scalable) spatial and spatio-temporal Poisson mixed models for high-dimensional areal count data
#' in a fully Bayesian setting using the integrated nested Laplace approximation (INLA) technique.
#'
#' @details Below, there is a list with a brief overview of all package functions:
#' \tabular{ll}{
#' \code{\link{add_neighbour}}\tab Adds isolated areas (polygons) to its nearest neighbour \cr
#' \code{\link{CAR_INLA}} \tab Fits several spatial CAR models for high-dimensional count data \cr
#' \code{\link{clustering_partition}} \tab Obtain a spatial partition using the DBSC algorithm \cr
#' \code{\link{connect_subgraphs}} \tab Merges disjoint connected subgraphs \cr
#' \code{\link{divide_carto}} \tab Divides the spatial domain into subregions \cr
#' \code{\link{MCAR_INLA}} \tab Fits several spatial multivariate CAR models for high-dimensional count data \cr
#' \code{\link{mergeINLA}} \tab Merges \code{inla} objects for partition models \cr
#' \code{\link{Mmodel_compute_cor}} \tab Computes between-diseases correlation coefficients for M-models \cr
#' \code{\link{Mmodel_icar}} \tab Implements the spatially non-structured multivariate latent effect \cr
#' \code{\link{Mmodel_icar}} \tab Implements the intrinsic multivariate CAR latent effect \cr
#' \code{\link{Mmodel_lcar}} \tab Implements the Leroux et al. (1999) multivariate CAR latent effect \cr
#' \code{\link{Mmodel_pcar}} \tab Implements the proper multivariate CAR latent effect \cr
#' \code{\link{random_partition}} \tab Defines a random partition of the spatial domain based on a regular grid \cr
#' \code{\link{STCAR_INLA}} \tab Fits several spatio-temporal CAR models for high-dimensional count data \cr
#' ----------------------\tab ---------------------------------------------------------------------------------- \cr
#' }
#'
#' @author
#' Maintainer: Aritz Adin <aritz.adin@unavarra.es>
#' \cr \cr
#' This work has been supported by Project MTM2017-82553-R (AEI/FEDER, UE) and Project PID2020-113125RB-I00/MCIN/AEI/10.13039/501100011033.
#' It has also been partially funded by the Public University of Navarra (project PJUPNA2001) and by la Caixa Foundation (ID 1000010434), Caja Navarra Foundation and UNED Pamplona, under agreement LCF/PR/PR15/51100007 (project REF P/13/20).
#'
#' @references
#' \insertRef{orozco2020}{bigDM}
#'
#' \insertRef{orozco2022}{bigDM}
#'
#' \insertRef{vicente2022}{bigDM}
#'
#' @seealso See the following vignettes for further details and examples using this package:
#' \enumerate{
#' \item{\href{https://emi-sstcdapp.unavarra.es/bigDM/bigDM-1-fitting-spatial-models.html}{\code{bigDM: fitting spatial models}}}
#' \item{\href{https://emi-sstcdapp.unavarra.es/bigDM/bigDM-2-parallel-and-distributed-modelling.html}{\code{bigDM: parallel and distributed modelling}}}
#' \item{\href{https://emi-sstcdapp.unavarra.es/bigDM/bigDM-3-fitting-spatio-temporal-models.html}{\code{bigDM: fitting spatio-temporal models}}}
#' \item{\href{https://emi-sstcdapp.unavarra.es/bigDM/bigDM-4-fitting-multivariate-spatial-models.html}{\code{bigDM: fitting multivariate spatial models}}}
#' }
#'
#' @examples
#' ## See the examples for CAR_INLA, MCAR_INLA and STCAR_INLA functions ##
#'
#' @name bigDM-package
#' @aliases bigDM
"_PACKAGE"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.