bigsplines: Smoothing Splines for Large Samples
Version 1.1-0

Fits smoothing spline regression models using scalable algorithms designed for large samples. Seven marginal spline types are supported: linear, cubic, different cubic, cubic periodic, cubic thin-plate, ordinal, and nominal. Random effects and parametric effects are also supported. Response can be Gaussian or non-Gaussian: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial.

Package details

AuthorNathaniel E. Helwig <helwig@umn.edu>
Date of publication2017-02-03 14:32:57
MaintainerNathaniel E. Helwig <helwig@umn.edu>
LicenseGPL (>= 2)
Version1.1-0
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("bigsplines")

Try the bigsplines package in your browser

Any scripts or data that you put into this service are public.

bigsplines documentation built on May 29, 2017, 2:46 p.m.