Selecting linear and generalized linear models for large data sets using modified stepwise procedure and modern selection criteria (like modifications of Bayesian Information Criterion). Selection can be performed on data which exceed RAM capacity. Special selection strategy is available, faster than classical stepwise procedure.

Author | Piotr Szulc |

Date of publication | 2016-12-31 01:44:08 |

Maintainer | Piotr Szulc <piotr.michal.szulc@gmail.com> |

License | GPL-3 |

Version | 0.7.1 |

bigstep

bigstep/tests

bigstep/tests/testthat.R

bigstep/tests/testthat

bigstep/tests/testthat/test_backward.R

bigstep/tests/testthat/test_selection.R

bigstep/tests/testthat/test_prepare.R

bigstep/tests/testthat/test_crit.R

bigstep/tests/testthat/test_fitmodel.R

bigstep/tests/testthat/test_forward.R

bigstep/tests/testthat/test_stepwise.R

bigstep/NAMESPACE

bigstep/R

bigstep/R/mbic.R
bigstep/R/allSteps.R
bigstep/R/calculateLogLik.R
bigstep/R/prepareMatrix.R
bigstep/R/aic.R
bigstep/R/mbic2.R
bigstep/R/bigstep.R
bigstep/R/multiForward.R
bigstep/R/selectModel.R
bigstep/R/multiBackward.R
bigstep/R/transposeBigMatrix.R
bigstep/R/maic2.R
bigstep/R/forwardStep.R
bigstep/R/fitLogistic.R
bigstep/R/fitPoisson.R
bigstep/R/bic.R
bigstep/R/stepwise.R
bigstep/R/maic.R
bigstep/R/fitLinear.R
bigstep/R/singleTests.R
bigstep/R/backwardStep.R
bigstep/MD5

bigstep/DESCRIPTION

bigstep/man

bigstep/man/mbic.Rd
bigstep/man/selectModel.Rd
bigstep/man/bigstep.Rd
bigstep/man/aic.Rd
bigstep/man/fitLogistic.Rd
bigstep/man/mbic2.Rd
bigstep/man/bic.Rd
bigstep/man/fitPoisson.Rd
bigstep/man/fitLinear.Rd
bigstep/man/maic2.Rd
bigstep/man/transposeBigMatrix.Rd
bigstep/man/maic.Rd
bigstep/man/singleTests.Rd
Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.