GenBinaryY | R Documentation |
Generate binary response data from a Marginalized Transition and Latent Variable Model
GenBinaryY( mean.formula, lv.formula = NULL, t.formula = NULL, beta = NULL, sigma = NULL, gamma = NULL, id, data, q = 10 )
mean.formula |
Right hand side of mean model formula |
lv.formula |
Latent variable model formula (right hand side only) |
t.formula |
Transition model formula (right hand side only) |
beta |
a vector of values for mean.formula |
sigma |
a vector of values for the latent variable portion of the association model (else NULL) |
gamma |
a vector of values for the transition porition of the association model (else NULL) |
id |
a vector of cluster identifiers (it should be the same length nrow(data)) |
data |
a required data frame |
q |
a scalar to denote the number of quadrature points used for GH numerical integration |
The function returns a binary response vector.
set.seed(1) N = 100 nclust = sample( seq(10,10), N, replace=TRUE) id = rep(seq(N), nclust) Xe = rep(rbinom(N,size=1,prob=.5), nclust) # binary exposure time = unlist( sapply( as.list(nclust), function(ZZ) seq(ZZ)-1 ) ) data = data.frame(id, time, Xe) data = data[order(data$id, data$time),] newdata = GenBinaryY(mean.formula=~time*Xe, lv.formula=~1, t.formula=~1, beta=c(-2.5, 0.25, 0.25, 0.1), sigma=1, gamma=1, id=id, data=data, q=20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.