Nothing
#' @keywords internal
"_PACKAGE"
#' @aliases binaryRL
#'
#' @title binaryRL: Reinforcement Learning Tools for Two-Alternative Forced Choice Tasks.
#'
#' @section Example Data:
#' \itemize{
#' \item \code{\link[binaryRL]{Mason_2024_G1}}:
#' Group 1 of Mason et al. (2024)
#' \item \code{\link[binaryRL]{Mason_2024_G2}}:
#' Group 2 of Mason et al. (2024)
#' }
#'
#' @section Steps:
#' \itemize{
#' \item \code{\link[binaryRL]{run_m}}:
#' Step 1: Building reinforcement learning model
#' \item \code{\link[binaryRL]{rcv_d}}:
#' Step 2: Generating fake data for parameter and model recovery
#' \item \code{\link[binaryRL]{fit_p}}:
#' Step 3: Optimizing parameters to fit real data
#' \item \code{\link[binaryRL]{rpl_e}}:
#' Step 4: Replaying the experiment with optimal parameters
#' }
#'
#' @section Models:
#' \itemize{
#' \item \code{\link[binaryRL]{TD}}:
#' TD Model
#' \item \code{\link[binaryRL]{RSTD}}:
#' RSTD Model
#' \item \code{\link[binaryRL]{Utility}}:
#' Utility Model
#' }
#'
#' @section Functions:
#' \itemize{
#' \item \code{\link[binaryRL]{func_gamma}}:
#' Utility Function
#' \item \code{\link[binaryRL]{func_eta}}:
#' Learning Rate
#' \item \code{\link[binaryRL]{func_epsilon}}:
#' Epsilon Related
#' \item \code{\link[binaryRL]{func_pi}}:
#' Upper-Confidence-Bound
#' \item \code{\link[binaryRL]{func_tau}}:
#' Soft-Max
#' \item \code{\link[binaryRL]{func_logl}}:
#' Loss Function
#' }
#'
#' @section Processes:
#' \itemize{
#' \item \code{\link[binaryRL]{optimize_para}}:
#' optimizing free parameters
#' \item \code{\link[binaryRL]{simulate_list}}:
#' simulating fake datasets
#' \item \code{\link[binaryRL]{recovery_data}}:
#' parameter and model recovery
#' }
#'
#' @section Summary:
#' \itemize{
#' \item \code{\link[binaryRL]{summary.binaryRL}}: summary(binaryRL.res)
#' }
#'
#' @name binaryRL-package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.