Nothing
#' @keywords internal
"_PACKAGE"
#' @title Bayesian inference for Neyman-Scott point processes
#'
#' @description The Bayesian MCMC estimation of parameters for Thomas-type cluster
#' point process with various inhomogeneities. It allows for inhomogeneity in
#' (i) distribution of parent points, (ii) mean number of points in a cluster,
#' (iii) cluster spread. The package also allows for the Bayesian MCMC
#' algorithm for the homogeneous generalized Thomas process.
#' The cluster size is allowed to have a variance that is greater or less
#' than the expected value (cluster sizes are over or under dispersed).
#' Details are described in Dvořák, Remeš, Beránek & Mrkvička (2022)
#' (\doi{10.48550/arXiv.2205.07946}).
#'
#' @name binspp
# #' @aliases binspp-package
#' @author Tomas Mrkvicka <mrkvicka.toma@gmail.com> (author),
#' Jiri Dvorak <dvorak@karlin.mff.cuni.cz> (author),
#' Ladislav Beranek <beranek@jcu.cz> (author),
#' Radim Remes <inrem@jcu.cz> (author, creator),
#' Jaewoo Park <jwpark88@yonsei.ac.kr> (contributor),
#' Sujeong Lee <dltnwjd2304@gmail.com> (contributor)
#'
#' @useDynLib binspp, .registration=TRUE
#' @import spatstat
#' @import Rcpp
#' @importFrom spatstat.model ppm
#' @importFrom spatstat.geom area owin ppp im
#' @importFrom spatstat.random rpoint rpoispp runifpoint
#' @importFrom mvtnorm rmvnorm pmvnorm
#' @importFrom cluster pam
#' @importFrom stats runif median pnorm quantile rnorm rpois vcov
#' @importFrom graphics abline axis barplot hist lines par points
## #' @importFrom FNN
## #' @importFrom Rcpp
#' @importFrom VGAM dgenpois0
## #' @importFrom nlme
## #' @importFrom spatstat
#' @importFrom Rcpp sourceCpp
#' @importFrom fields rdist
#' @note
#' License: GPL-3
## #' Encoding: UTF-8
#'
#' @references
#' Anderson, C. Mrkvička T. (2020). Inference for cluster point
#' processes with over- or under-dispersed cluster sizes,
#' \emph{Statistics and computing} \strong{30}, 1573–1590,
#' \doi{10.1007/s11222-020-09960-8}.
#'
#' Kopecký J., Mrkvička T. (2016). On the Bayesian estimation
#' for the stationary Neyman-Scott point processes,
#' Applications of Mathematics \strong{61}/\strong{4}, 503-514.
#' Available from: \doi{10.1007/s10492-016-0144-8}.
#'
#' Dvořák, J., Remeš, R., Beránek, L., Mrkvička, T. (2022). binspp:
#' An R Package for Bayesian Inference for Neyman-Scott Point Processes
#' with Complex Inhomogeneity Structure. \emph{arXiv}.
#' \doi{10.48550/ARXIV.2205.07946}.
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.