library(dplyr) library(ggplot2)
aberr_module <- params$aberr_module parsed_title <- dplyr::case_when( aberr_module == "dicentrics" ~ "Dicentrics dose estimation report", aberr_module == "translocations" ~ "Translocation FISH dose estimation report", aberr_module == "micronuclei" ~ "Micronuclei dose estimation report" )
r parsed_title
render_table <- function(x, font_size = NULL, ...) { knitr::kable(x, format = "latex", booktabs = TRUE, ...) %>% kableExtra::kable_styling( position = "center", latex_options = "HOLD_position", font_size = font_size ) }
# General parameters assessment <- params$est_results_list[["assessment"]] est_doses_whole <- params$est_results_list[["est_doses_whole"]] est_doses_partial <- params$est_results_list[["est_doses_partial"]] est_frac_partial <- params$est_results_list[["est_frac_partial"]] est_mixing_prop_hetero <- params$est_results_list[["est_mixing_prop_hetero"]] est_yields_hetero <- params$est_results_list[["est_yields_hetero"]] est_doses_hetero <- params$est_results_list[["est_doses_hetero"]] est_frac_hetero <- params$est_results_list[["est_frac_hetero"]] AIC_whole <- params$est_results_list[["AIC_whole"]] AIC_partial <- params$est_results_list[["AIC_partial"]] AIC_hetero <- params$est_results_list[["AIC_hetero"]] fit_coeffs <- params$est_results_list[["fit_coeffs"]] fit_formula_tex <- params$est_results_list[["fit_formula_tex"]] protraction <- params$est_results_list[["protraction"]] case_data <- params$est_results_list[["case_data"]] case_description <- params$est_results_list[["case_description"]] results_comments <- params$est_results_list[["results_comments"]] gg_curve <- params$est_results_list[["gg_curve"]] # Translocations genome_factor <- params$est_results_list[["genome_factor"]] chromosome_table <- params$est_results_list[["chromosome_table"]] trans_sex <- params$est_results_list[["trans_sex"]] confounders <- params$est_results_list[["confounders"]]
r paste0("$$", fit_formula_tex, if (protraction[1]) "G(x)", "$$")
r if (protraction[1]) {
paste(
"where $G(x)$ is a time-dependent correction that takes into account protracted and fractionated exposures:",
"$$", "G(x) = \\frac{2}{x^{2}} \\left(x - 1 - e^{-x} \\right), \\quad x = \\frac{t}{t_{0}}", "$$"
)
}
r if (protraction[1]) {
paste0(
"The protraction times used for the dose estimation were ",
paste0("$", "t =", protraction[2]), "\\, \\textrm{h}", "$",
" and ",
paste0("$", "t_{0} =", protraction[3]), "\\, \\textrm{h}", "$",
"."
)
}
r if (aberr_module == "translocations") {"## Full genome coefficients"} else {"## Coefficients"}
fit_coeffs %>% formatC(format = "e", digits = 3) %>% biodosetools:::fix_coeff_names(type = "rows", output = "kable") %>% render_table(align = "c", escape = FALSE)
r if (aberr_module == "translocations") {"# Case chromosome data"}
r if (aberr_module == "translocations") {
paste("The analysed blood sample comes from a", trans_sex, "individual.")
}
if (aberr_module == "translocations") { num_cols <- as.numeric(ncol(chromosome_table)) chromosome_table %>% dplyr::mutate( dplyr::across( .cols = dplyr::everything(), .fns = function(x) { x <- ifelse(is.na(x) | x == "FALSE", "", x) x <- ifelse(x == "TRUE", "$\\checkmark$", x) return(x) } ) ) %>% render_table(align = "c") }
r if (aberr_module == "translocations") {
if (num_cols == 1) {
"where each chromosome was stained using M-FISH."
}
}
r if (aberr_module == "translocations") {"## Genomic conversion factor"}
r if (aberr_module == "translocations") {
paste0("The genomic conversion factor to full genome is ", as.character(round(genome_factor, 3)), ".")
}
data <- case_data %>% as.matrix() %>% formatC(format = "f", digits = 3) %>% as.data.frame() %>% dplyr::mutate( dplyr::across( .cols = c("N", "X", dplyr::starts_with("C")), .fns = as.integer ) ) %>% biodosetools:::fix_count_data_names(type = "case", output = "kable") data$`$u$` <- kableExtra::cell_spec( x = data$`$u$`, background = ifelse(data$`$u$` > 1.96, "#ffc0cb", "white") ) data %>% render_table(align = "c", escape = FALSE)
r if (aberr_module == "translocations") {"## Confounders"}
r if (aberr_module == "translocations") {
if (is.null(confounders)) {
paste("No confounders were selected.")
} else if (!is.null(confounders) & length(confounders) == 1) {
paste0("To account for confounders, the following translocation frequency per cell was manually input: ", confounders, ".")
} else if (!is.null(confounders) & length(confounders) > 1) {
paste("The following confounders were selected:")
}
}
if (aberr_module == "translocations") { if (!is.null(confounders) & length(confounders) > 1) { confounders %>% as.matrix() %>% t() %>% as.data.frame() %>% mutate( sex_bool = with(., case_when( (sex_bool == TRUE) ~ "Used", (sex_bool == FALSE) ~ "Not used" )), smoker_bool = with(., case_when( (smoker_bool == TRUE) ~ "Yes", (smoker_bool == FALSE) ~ "No" )), ethnicity_value = with(., case_when( (ethnicity_value == "white") ~ "White", (ethnicity_value == "asian") ~ "Asian", (ethnicity_value == "black") ~ "Black", (ethnicity_value == "other") ~ "Others", TRUE ~ "Not specified" )), region_value = with(., case_when( (region_value == "n-america") ~ "North America", (region_value == "w-europe") ~ "Western Europe", (region_value == "c-europe") ~ "Central Europe", (region_value == "e-europe") ~ "Eastern Europe", (region_value == "asia") ~ "Asia", TRUE ~ "Not specified" )) ) %>% `colnames<-`(c("Age", "Sex", "Smoker", "Ethnicity", "Lab region")) %>% render_table(align = "c") } }
r case_description
r if (TRUE) {"## Whole-body exposure results"}
r if (TRUE) {"### Whole-body exposure estimation {-}"}
if (TRUE) { est_doses_whole %>% dplyr::select(yield) %>% t() %>% formatC(format = "f", digits = 3) %>% as.data.frame() %>% # Convert to hot and format table render_table(align = "c") }
if (TRUE) { est_doses_whole %>% dplyr::select(`dose (Gy)` = dose) %>% t() %>% formatC(format = "f", digits = 3) %>% as.data.frame() %>% # Convert to hot and format table render_table(align = "c") }
r if (assessment == "partial-body") {"## Partial-body exposure results"}
r if (assessment == "partial-body") {"### Partial-body exposure estimation {-}"}
if (assessment == "partial-body") { est_doses_partial %>% dplyr::select(yield) %>% t() %>% formatC(format = "f", digits = 3) %>% as.data.frame() %>% # Fix possible NA values dplyr::mutate_if(is.logical, as.double) %>% `colnames<-`(c("lower", "estimate", "upper")) %>% `row.names<-`("yield") %>% # Convert to hot and format table render_table(align = "c") }
if (assessment == "partial-body") { est_doses_partial %>% dplyr::select(dose) %>% t() %>% formatC(format = "f", digits = 3) %>% as.data.frame() %>% # Fix possible NA values dplyr::mutate_if(is.logical, as.double) %>% `colnames<-`(c("lower", "estimate", "upper")) %>% `row.names<-`("dose (Gy)") %>% # Convert to hot and format table render_table(align = "c") }
r if (assessment == "partial-body") {"### Initial fraction of irradiated cells {-}"}
if (assessment == "partial-body") { est_frac_partial %>% t() %>% formatC(format = "f", digits = 3) %>% as.data.frame() %>% # Fix possible NA values dplyr::mutate_if(is.logical, as.double) %>% `colnames<-`(c("lower", "estimate", "upper")) %>% `row.names<-`("fraction") %>% # Convert to hot and format table render_table(align = "c") }
r if (assessment == "hetero") {"## Heterogeneous exposure results"}
r if (assessment == "hetero") {"### Observed fraction of irradiated cells and its yield {-}"}
if (assessment == "hetero") { est_mixing_prop_hetero %>% as.matrix() %>% formatC(format = "f", digits = 3) %>% as.data.frame() %>% # Fix possible NA values dplyr::mutate_if(is.logical, as.double) %>% `colnames<-`(c("yield", "yield.err", "frac", "frac.err")) %>% `row.names<-`(c("dose1", "dose2")) %>% # Convert to hot and format table render_table(align = "c") }
r if (assessment == "hetero") {"### Heterogeneous exposure estimation {-}"}
if (assessment == "hetero") { est_yields_hetero %>% t() %>% formatC(format = "f", digits = 3) %>% as.data.frame() %>% # Fix possible NA values dplyr::mutate_if(is.logical, as.double) %>% `colnames<-`(c("lower", "estimate", "upper")) %>% `row.names<-`(c("yield1", "yield2")) %>% # Convert to hot and format table render_table(align = "c") }
if (assessment == "hetero") { est_doses_hetero %>% t() %>% formatC(format = "f", digits = 3) %>% as.data.frame() %>% # Fix possible NA values dplyr::mutate_if(is.logical, as.double) %>% `colnames<-`(c("lower", "estimate", "upper")) %>% `row.names<-`(c("dose1 (Gy)", "dose2 (Gy)")) %>% # Convert to hot and format table render_table(align = "c") }
r if (assessment == "hetero") {"### Initial fraction of irradiated cells {-}"}
if (assessment == "hetero") { est_frac_hetero %>% # Fix possible NA values as.matrix() %>% formatC(format = "f", digits = 3) %>% as.data.frame() %>% dplyr::mutate_if(is.logical, as.double) %>% `colnames<-`(c("estimate", "std.err")) %>% `row.names<-`(c("dose1", "dose2")) %>% # Convert to hot and format table render_table(align = "c") }
gg_curve
r results_comments
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.