Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(biosensors.usc)
## ----file1--------------------------------------------------------------------
file1 = system.file("extdata", "data_1.csv", package = "biosensors.usc")
## ----file2--------------------------------------------------------------------
file2 = system.file("extdata", "variables_1.csv", package = "biosensors.usc")
## ----data1--------------------------------------------------------------------
data1 = load_data(file1, file2)
class(data1)
names(data1)
## -----------------------------------------------------------------------------
another_data_example = generate_data(n=100, Qp=100, Xp=5)
head(another_data_example$variables)
plot(another_data_example$quantiles, main="Simulated data")
## ----wass, fig.width=6, fig.height=4------------------------------------------
regm = regmod_regression(data1, "BMI")
## ----xpred, fig.width=6, fig.height=4-----------------------------------------
xpred = as.matrix(25)
pred = regmod_prediction(regm, xpred)
## ----ridg, fig.width=6, fig.height=4------------------------------------------
ridg = ridge_regression(data1, "BMI")
## ----nada, fig.width=6, fig.height=4------------------------------------------
nada = nadayara_regression(data1, "BMI")
## ---- fig.width=6, fig.height=4-----------------------------------------------
npre = nadayara_prediction(nada, t(colMeans(data1$quantiles$data)))
## ----data2--------------------------------------------------------------------
file3 = system.file("extdata", "data_2.csv", package = "biosensors.usc")
file4 = system.file("extdata", "variables_2.csv", package = "biosensors.usc")
data2 = load_data(file3, file4)
## ----htest--------------------------------------------------------------------
htest = hypothesis_testing(data1, data2)
## -----------------------------------------------------------------------------
print(htest$energy_pvalue)
print(htest$anova_pvalue)
## ----clus, fig.width=6, fig.height=8------------------------------------------
clus = clustering(data1, clusters=3)
## -----------------------------------------------------------------------------
assignments = clustering_prediction(clus, data1$quantiles$data)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.