Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE
)
## ----setup--------------------------------------------------------------------
# library(birdnetR)
## ----init_model---------------------------------------------------------------
# # The models are defined using the birdnet_model_* family of functions.
# # See ?birdnet_model_load for more details.
#
# # Initialize the TensorFlow Lite model
# birdnet_model_tflite("v2.4")
#
# # Initialize the Protobuf model
# birdnet_model_protobuf("v2.4")
#
#
## ----init_custom_model--------------------------------------------------------
# classifier_folder <- "/path/to/custom/model"
# classifier_name <- "Custom_Classifier"
#
# birdnet_model_custom("v2.4", classifier_folder = classifier_folder, classifier_name = classifier_name)
#
## ----species_in_audio---------------------------------------------------------
# library(birdnetR)
#
# # Initialize the TFLite BirdNET Model
# model <- birdnet_model_tflite("v2.4")
#
# # Path to an example audio file (replace with your own file path)
# audio_path <- system.file("extdata", "soundscape.mp3", package = "birdnetR")
#
# # Predict species in the audio file
# predictions <- predict_species_from_audio_file(model, audio_path, min_confidence = 0.3, keep_empty = FALSE)
#
# # Example output:
# # start end scientific_name common_name confidence
# # 0 3 Poecile atricapillus Black-capped Chickadee 0.8140557
# # 3 6 Poecile atricapillus Black-capped Chickadee 0.3082857
# # 9 12 Haemorhous mexicanus House Finch 0.6393781
# # 18 21 Cyanocitta cristata Blue Jay 0.4352708
# # 18 21 Clamator coromandus Chestnut-winged Cuckoo 0.3225890
# # 21 24 Cyanocitta cristata Blue Jay 0.3290859
# # ...
#
## ----top_predictions----------------------------------------------------------
# # Get the top prediction for each interval
# get_top_prediction(predictions)
#
# # Example output:
# # start end scientific_name common_name confidence
# # 0 3 Poecile atricapillus Black-capped Chickadee 0.8140557
# # 3 6 Poecile atricapillus Black-capped Chickadee 0.3082857
# # 9 12 Haemorhous mexicanus House Finch 0.6393781
# # 18 21 Cyanocitta cristata Blue Jay 0.4352708
# # 21 24 Cyanocitta cristata Blue Jay 0.3290859
#
# # Note: Fewer rows appear for the interval 18-21 as only the top prediction is retained.
#
## ----class_label_example------------------------------------------------------
# "Accipiter cooperii_Cooper's Hawk"
# "Agelaius phoeniceus_Red-winged Blackbird"
## ----label_file_paths---------------------------------------------------------
# # Retrieve the path to the full list of BirdNET classes.
# # Use this as a template for creating your custom species list, but don't modify this file directly.
# labels_path(model, language = "en_us")
# # /.../birdnet/models/v2.4/TFLite/labels/en_us.txt"
#
# # Path to the example custom species list with a reduced number of species
# custom_species_list <- system.file("extdata", "species_list.txt", package = "birdnetR")
# read_labels(custom_species_list)
#
# # [1] "Accipiter cooperii_Cooper's Hawk" "Agelaius phoeniceus_Red-winged Blackbird"
# # [3] "Anas platyrhynchos_Mallard" "Anas rubripes_American Black Duck"
# # [5] "Ardea herodias_Great Blue Heron" "Baeolophus bicolor_Tufted Titmouse"
# # [7] "Branta canadensis_Canada Goose" "Bucephala albeola_Bufflehead"
# # [9] "Bucephala clangula_Common Goldeneye" "Buteo jamaicensis_Red-tailed Hawk"
# # ...
#
## ----use_custom_species_list--------------------------------------------------
# predict_species_from_audio_file(model, audio_path, filter_species = c("Cyanocitta cristata_Blue Jay", "Junco hyemalis_Dark-eyed Junco"), min_confidence = 0.3, keep_empty = FALSE)
#
# # Example output:
# # start end scientific_name common_name confidence
# # 18 21 Cyanocitta cristata Blue Jay 0.4352708
# # 21 24 Cyanocitta cristata Blue Jay 0.3290859
# # 33 36 Junco hyemalis Dark-eyed Junco 0.4590625
# # 36 39 Junco hyemalis Dark-eyed Junco 0.3536855
# # 42 45 Junco hyemalis Dark-eyed Junco 0.7375432
#
## ----use_meta_model-----------------------------------------------------------
# # load the meta model
# meta_model <- birdnet_model_meta("v2.4")
#
# # predict species occurrence in Ithaca, NY in week 4 of the year
# predict_species_at_location_and_time(meta_model, latitude = 42.5, longitude = -76.45, week = 4)
#
# # Example output:
# # label confidence
# # Cyanocitta cristata_Blue Jay 0.92886776
# # Poecile atricapillus_Black-capped Chickadee 0.90332001
# # Sitta carolinensis_White-breasted Nuthatch 0.83232993
# # Cardinalis cardinalis_Northern Cardinal 0.82705086
# # Junco hyemalis_Dark-eyed Junco 0.82440305
# # Zenaida macroura_Mourning Dove 0.80619872
# # Corvus brachyrhynchos_American Crow 0.80580002
# # Dryobates pubescens_Downy Woodpecker 0.79495054
# # Spinus tristis_American Goldfinch 0.72782934
# # Baeolophus bicolor_Tufted Titmouse 0.63683629
#
## ----languages----------------------------------------------------------------
# # supply the version of the BirdNET model you are using
# available_languages("v2.4")
## -----------------------------------------------------------------------------
# birdnet_model_tflite("v2.4", language = "fr")
## ----labels_language----------------------------------------------------------
# labels_path_lang <- labels_path(model, language = "fr")
# read_labels(labels_path_lang)
#
# # Example output:
# # [1] "Abroscopus albogularis_Bouscarle à moustaches" "Abroscopus schisticeps_Bouscarle à face noire" "Abroscopus superciliaris_Bouscarle à sourcils blancs"
# # [4] "Aburria aburri_Pénélope aburri" "Acanthagenys rufogularis_Méliphage à bavette" "Acanthidops bairdi_Bec-en-cheville gris"
# # [7] "Acanthis cabaret_Sizerin cabaret" "Acanthis flammea_Sizerin flammé" "Acanthis hornemanni_Sizerin blanchâtre"
# # [10] "Acanthisitta chloris_Xénique grimpeur" "Acanthiza apicalis_Acanthize troglodyte" "Acanthiza chrysorrhoa_Acanthize à croupion jaune"
# # [13] "Acanthiza ewingii_Acanthize de Tasmanie" "Acanthiza inornata_Acanthize sobre" "Acanthiza lineata_Acanthize ridé"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.