Nothing
#' @title Syntax specifications for blatent
#'
#' @description The blatent model syntax provides the specifications for a Bayesian latent variable model.
#'
#' @details The model syntax, encapsulated in quotation marks, consists of up to three components:
#' \enumerate{
#' \item \emph{\bold{Model Formulae:}} R model-like formulae specifying the model for all observed and latent variables in the model. See \code{\link{formula}} for
#' R formula specifics. Blatent model formulae differ only in that more than one variable can be provided to the left of the \code{~}.
#'
#' In this section of syntax, there are no differences between latent and observed variables. Model statements are formed using
#' the linear predictor for each variable. This means that to specify a measurement model, the latent variables will appear to the right-hand side of the \code{~}.
#'
#' Examples:
#' \itemize{
#' \item Measurement model where one latent variable (LV) predicts ten items (item1-item10, implying item1, item2, ..., item10):
#'
#' \code{item1-item10 ~ LV}
#'
#' \item One observed variable (X) predicting another observed variable (Y):
#'
#' \code{Y ~ X}
#'
#' \item Two items (itemA and itemB) measuring two latent variables (LV1, LV2) with a latent variable interaction:
#'
#' \code{itemA itemB ~ LV1 + LV2 + LV1:LV2}
#'
#' \item Two items (itemA and itemB) measuring two latent variables (LV1, LV2) with a latent variable interaction (R \code{\link{formula}} shorthand):
#'
#' \code{itemA itemB ~ LV1*LV2}
#'
#' \item Measurement model with seven items (item1-item7) measuring three latent variables (A1, A2, A3) from Chapter 9 of Rupp, Templin, Henson (2010):
#'
#' \code{item1 ~ A1}
#'
#' \code{item2 ~ A2}
#'
#' \code{item3 ~ A3}
#'
#' \code{item4 ~ A1 + A2 + A1:A2}
#'
#' \code{item5 ~ A1 + A3 + A1:A3}
#'
#' \code{item6 ~ A2 + A3 + A2:A3}
#'
#' \code{item7 ~ A1 + A2 + A3 + A1:A2 + A1:A3 + A2:A3 + A1:A2:A3}
#' }
#'
#' \item \emph{\bold{Latent Variable Specifications:}} Latent variables are declared using a unevaluated function call to
#' the \code{\link{latent}} function. Here, only the latent variables are declared along with options for their estimation.
#' See \code{\link{latent}} for more information.
#'
#' \code{A1 A2 A3 <- latent(unit = 'rows', distribution = 'mvbernoulli', structure = 'joint', type = 'ordinal', jointName = 'class')}
#'
#' Additionally, blatent currently uses a Bayesian Inference Network style of specifying the distributional associations between
#' latent variables: Model statements must be given to specify any associations between latent variables. By default,
#' all latent variables are independent, which is a terrible assumption. To fix this, for instance, as shown in
#' Hu and Templin (2020), the following syntax will give a model that is equivalent to the saturated model for a DCM:
#'
#' \preformatted{
#' # Structural Model
#' A1 ~ 1
#' A2 ~ A1
#' A3 ~ A1 + A2 + A1:A2
#' }
#
#' \item \emph{\bold{Observed Variable Specifications:}} Observed variables are declared using a unevaluated function call to
#' the \code{\link{observed}} function. Here, only the observed variables are declared along with options for their estimation.
#' See \code{\link{observed}} for more information.
#'
#' \code{item1-item7 <- observed(distribution = 'bernoulli', link = 'probit')}
#' }
#'
#' Continuing with the syntax example from above, the full syntax for the model in Chapter 9 of Rupp, Templin, Henson (2010) is:
#'
#' \preformatted{
#' modelText = "
#' # Measurement Model
#'
#' item1 ~ A1
#' item2 ~ A2
#' item3 ~ A3
#' item4 ~ A1 + A2 + A1:A2
#' item5 ~ A1 + A3 + A1:A3
#' item6 ~ A2 + A3 + A2:A3
#' item7 ~ A1 + A2 + A3 + A1:A2 + A1:A3 + A2:A3 + A1:A2:A3
#'
#' # Structural Model
#' A1 ~ 1
#' A2 ~ A1
#' A3 ~ A1 + A2 + A1:A2
#'
# # Latent Variable Specifications:
#' A1 A2 A3 <- latent(unit = 'rows', distribution = 'bernoulli', structure = 'univariate', type = 'ordinal')
#'
#' # Observed Variable Specifications:
#' item1-item7 <- observed(distribution = 'bernoulli', link = 'probit')
#'"}
#'
#' @references
#' Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic Measurement: Theory, Methods, and Applications. New York: Guilford.
#'
#' Hu, B., & Templin, J. (2020). Using diagnostic classification models to validate attribute hierarchies and
#' evaluate model fit in Bayesian networks. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2019.1632165
#'
#'
#' @name blatentSyntax
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.