mixture2p: Two-parameter mixture model by Zhang and Luck (2008).

View source: R/model_mixture2p.R

mixture2pR Documentation

Two-parameter mixture model by Zhang and Luck (2008).

Description

Two-parameter mixture model by Zhang and Luck (2008).

Usage

mixture2p(resp_error, ...)

Arguments

resp_error

The name of the variable in the provided dataset containing the response error. The response Error should code the response relative to the to-be-recalled target in radians. You can transform the response error in degrees to radian using the deg2rad function.

...

used internally for testing, ignore it

Details

  • Domain: Visual working memory

  • Task: Continuous reproduction

  • Name: Two-parameter mixture model by Zhang and Luck (2008).

  • Citation:

    • Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235

  • Requirements:

    • The response vairable should be in radians and represent the angular error relative to the target

  • Parameters:

    • mu1: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default.

    • kappa: Concentration parameter of the von Mises distribution

    • thetat: Mixture weight for target responses

  • Fixed parameters:

    • mu1 = 0

    • mu2 = 0

    • kappa2 = -100

  • Default parameter links:

    • mu1 = tan_half; kappa = log; thetat = identity

  • Default priors:

    • mu1:

      • main: student_t(1, 0, 1)

    • kappa:

      • main: normal(2, 1)

      • effects: normal(0, 1)

    • thetat:

      • main: logistic(0, 1)

Value

An object of class bmmodel

Examples


# generate artificial data
dat <- data.frame(y = rmixture2p(n=2000))

# define formula
ff <- bmmformula(kappa ~ 1, thetat ~ 1)

model <- mixture2p(resp_error = "y")

# fit the model
fit <- bmm(formula = ff,
           data = dat,
           model = model,
           cores = 4,
           iter = 500,
           backend = 'cmdstanr')


bmm documentation built on May 29, 2024, 11:52 a.m.