dustexplosion | R Documentation |
Scenario derivation and consequence evaluation of dust explosion accident based on dynamic Bayesian network.
A discrete Bayesian network for the accurate solution of scenario state probability. Probabilities were given within the referenced paper. The vertices are:
(True, False);
(True, False);
(True, False);
(I, II, III, IV);
(I, II, III, IV);
(True, False);
(I, II, III, IV);
(True, False);
(True, False);
(I, II, III, IV, V);
(True, False);
(I, II, III, IV);
(I, II, III, IV);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
(True, False);
An object of class bn.fit
. Refer to the documentation of bnlearn
for details.
Pang, L., Zhang, M., Yang, K., & Sun, S. (2023). Scenario derivation and consequence evaluation of dust explosion accident based on dynamic Bayesian network. Journal of Loss Prevention in the Process Industries, 83, 105055.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.