Nothing
#' arcticwaters Bayesian Network
#'
#' An object-oriented Bayesian network model for the quantitative risk assessment of navigational accidents in ice-covered Arctic waters.
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network for the quantitative risk assessment of multiple navigational accidents in ice-covered Arctic waters. Probabilities were given within the referenced paper. The vertices are:
#' \describe{
#' \item{AidNavigationFailure}{(No, Yes);}
#' \item{AirTemperature}{(<0 degrees, >0 degrees);}
#' \item{C_BesettingInIce}{(Significant, Severe, Catastrophic);}
#' \item{C_Collision}{(Significant, Severe, Catastrophic);}
#' \item{C_Grounding}{(Significant, Severe, Catastrophic);}
#' \item{C_ShipIceCollision}{(Significant, Severe, Catastrophic);}
#' \item{ChannelDepth}{(Inadequate, Adequate);}
#' \item{ChartUpdating}{(No, Yes);}
#' \item{CommunicationEquipmentFailure}{(No, Yes);}
#' \item{DriftIce}{(No, Yes);}
#' \item{EnvironmentalObstacles}{(No, Yes);}
#' \item{Fatigued}{(No, Yes);}
#' \item{Fog}{(No, Yes);}
#' \item{GrossTonnage}{((0,500], (500,3000], (3000,10000], >10000);}
#' \item{IceConcentration}{(<3/10, 4/10-6/10, >7/10);}
#' \item{IceCondition}{(Poor, Good);}
#' \item{IceStrength}{(Low, Medium, High);}
#' \item{IceThickness}{(<0.5m, >0.5m);}
#' \item{IceType}{(Thin Ice, Medium Ice, Old Ice);}
#' \item{InadequateKnowledge}{(No, Yes);}
#' \item{JudgmentFailure}{(No, Yes);}
#' \item{LackCommunication}{(No, Yes);}
#' \item{LackSafetyMeasures}{(No, Yes);}
#' \item{LackSituationalAwareness}{(No, Yes);}
#' \item{MechanicalEquipmentFailure}{(No, Yes);}
#' \item{NavigatorFailure}{(No, Yes);}
#' \item{Negligence}{(No, Yes);}
#' \item{P_BesettingInIce}{(No, Yes);}
#' \item{P_Collision}{(No, Yes);}
#' \item{P_Grounding}{(No, Yes);}
#' \item{P_ShipIceCollision}{(No, Yes);}
#' \item{PowerFailure}{(No, Yes);}
#' \item{PropellerFailure}{(No, Yes);}
#' \item{RadarFailure}{(No, Yes);}
#' \item{Rain}{(No, Yes);}
#' \item{SeaCurrent}{(No, Yes);}
#' \item{SeaTemperature}{(<0 degrees, >0 degrees);}
#' \item{ShipType}{(Oil Tanker, General Cargo Ship, Passenger Ship, Icebreaker, Others);}
#' \item{SteeringFailure}{(No, Yes);}
#' \item{StrongWind}{(No, Yes);}
#' \item{UnsafeAct}{(No, Yes);}
#' \item{UnsafeCondition}{(No, Yes);}
#' \item{UnsafeSpeed}{(No, Yes);}
#' \item{Visibility}{(Poor, Good);}
#' \item{WaterwayCondition}{(Poor, Good);}
#' \item{WeatherCondition}{(Poor, Good);}
#' }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords NULL
#' @importClassesFrom bnlearn bn.fit
#' @references Fu, S., Zhang, Y., Zhang, M., Han, B., & Wu, Z. (2023). An object-oriented Bayesian network model for the quantitative risk assessment of navigational accidents in ice-covered Arctic waters. Reliability Engineering & System Safety, 238, 109459.
"arcticwaters"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.