Nothing
#' bullet Bayesian Network
#'
#'
#' Combined interpretation of objective firearm evidence comparison algorithms using Bayesian network.
#'
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network to leverage the strengths of individual approaches to evaluate the similarity of features on two bullets. The network was available in a repository. The vertices are:
#' \describe{
#' \item{Conclusion}{(NotSource, Source);}
#' \item{CCF}{Cross-correlation function (CCF_0_1, CCF_1_2, CCF_2_3, CCF_3_4, CCF_4_5, CCF_5_6, CCF_6_7, CCF_7_8, CCF_8_9, CCF_9_10);}
#' \item{CMPS}{Congruent matching profile segments (CMPS_0, CMPS_1, CMPS_2, CMPS_3, ... , CMPS_27);}
#' \item{RF}{Random forest (RF_0_1, RF_1_2, RF_2_3, RF_3_4, RF_4_5, RF_5_6, RF_6_7, RF_7_8, RF_8_9, RF_9_10);}
#' \item{CMS}{Consecutively matching striae (CMS_0, CMS_1, .... , CMS_29);}
#' }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords TAN
#' @importClassesFrom bnlearn bn.fit
#' @references Spaulding, J. S., & LaCasse, L. S. (2024). Combined interpretation of objective firearm evidence comparison algorithms using Bayesian networks. Journal of Forensic Sciences.
"bullet"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.