R/bullet.R

#' bullet Bayesian Network
#'
#'
#' Combined interpretation of objective firearm evidence comparison algorithms using Bayesian network.
#'
#'  @usage NULL
#'
#' @format
#' A discrete Bayesian network to leverage the strengths of individual approaches to evaluate the similarity of features on two bullets. The network was available in a repository. The vertices are:
#' \describe{
#' \item{Conclusion}{(NotSource, Source);}
#' \item{CCF}{Cross-correlation function (CCF_0_1, CCF_1_2, CCF_2_3, CCF_3_4, CCF_4_5, CCF_5_6, CCF_6_7, CCF_7_8, CCF_8_9, CCF_9_10);}
#' \item{CMPS}{Congruent matching profile segments (CMPS_0, CMPS_1, CMPS_2, CMPS_3, ... , CMPS_27);}
#' \item{RF}{Random forest (RF_0_1, RF_1_2, RF_2_3, RF_3_4, RF_4_5, RF_5_6, RF_6_7, RF_7_8, RF_8_9, RF_9_10);}
#' \item{CMS}{Consecutively matching striae (CMS_0, CMS_1, .... , CMS_29);}
#'  }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords TAN
#' @importClassesFrom bnlearn bn.fit
#' @references Spaulding, J. S., & LaCasse, L. S. (2024). Combined interpretation of objective firearm evidence comparison algorithms using Bayesian networks. Journal of Forensic Sciences.
"bullet"

Try the bnRep package in your browser

Any scripts or data that you put into this service are public.

bnRep documentation built on April 12, 2025, 1:13 a.m.