R/burglar.R

#' burglar Bayesian Network
#'
#'
#' Strategies for selecting and evaluating information.
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network modeling a simple burglary scenario (Model 1, Table 2). The network was available from an associated repository. The vertices are:
#' \describe{
#' \item{Burglar}{(Suspect 1, Suspect 2, Suspect3);}
#' \item{PrimaryItemStolen}{(Jewellery, Electronics, Money);}
#' \item{BurglaryTime}{(Day, Night);}
#'  }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords NaiveBayes
#' @importClassesFrom bnlearn bn.fit
#' @references Liefgreen, A., Pilditch, T., & Lagnado, D. (2020). Strategies for selecting and evaluating information. Cognitive Psychology, 123, 101332.
"burglar"

Try the bnRep package in your browser

Any scripts or data that you put into this service are public.

bnRep documentation built on April 12, 2025, 1:13 a.m.