Nothing
#' cng Bayesian Network
#'
#' Quantitative risk estimation of CNG station by using fuzzy bayesian networks and consequence modeling.
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network for risk assessment in compressed natural gas (CNG) stations. The probabilities were given within the referenced paper. The vertices are:
#' \describe{
#' \item{X1}{Not up-to-date technology (T, F);}
#' \item{X2}{Lack of maintenance (T, F);}
#' \item{X3}{Unsafe equipment (T, F);}
#' \item{X4}{Type of ignition material (T, F);}
#' \item{X5}{The nature of the chemical substance (T, F);}
#' \item{X6}{Inspection defect in wear detection (T, F);}
#' \item{X7}{Improper use of the equipment (T, F);}
#' \item{X8}{Leakage (T, F);}
#' \item{X9}{High temperature (T, F);}
#' \item{X10}{Low temperature (T, F);}
#' \item{X11}{Horizontal wind speed (T, F);}
#' \item{X12}{Vertical wind speed (T, F);}
#' \item{X13}{Environmental stability and instability (T, F);}
#' \item{X14}{Sunny hours (T, F);}
#' \item{X15}{Relative humidity and evaporation rate (T, F);}
#' \item{X16}{Lighting (T, F);}
#' \item{X17}{Landslide (T, F);}
#' \item{X18}{Flood (T, F);}
#' \item{X19}{Earthquake (T, F);}
#' \item{X20}{Land settlement (T, F);}
#' \item{X21}{Deliberate vandalism (T, F);}
#' \item{X22}{Incidents related to the missile site (T, F);}
#' \item{X23}{Military attack (T, F);}
#' \item{X24}{Explosion of other equipment (T, F);}
#' \item{X25}{Deliberate error in the execution of the recipe (T, F);}
#' \item{X26}{Accidental collision valves (T, F);}
#' \item{X27}{Failure to issue a work permit (T, F);}
#' \item{X28}{Artificial lighting (T, F);}
#' \item{X29}{Natural lighting (T, F);}
#' \item{X30}{Lack of cost (T, F);}
#' \item{X31}{Requirements for conducting training classes by managers (T, F);}
#' \item{X32}{Fatigue (T, F);}
#' \item{X33}{Shift work (T, F);}
#' \item{X34}{Stress - internal causes) (T, F);}
#' \item{X35}{Stress - external causes (T, F);}
#' \item{X36}{Not having enough experience and skills (T, F);}
#' \item{X37}{Hearing loss - non-occupational causes (T, F);}
#' \item{X38}{Hearing loss - occupational causes (T, F);}
#' \item{X39}{Failure to notify the control room in time (T, F);}
#' \item{X40}{Fear of explosion and fire by operator (T, F);}
#' \item{X41}{Operator performance - temperature and humidity (T, F);}
#' \item{X42}{Chemical pollutants - particles (T, F);}
#' \item{X43}{Chemical pollutants - gas and steam (T, F);}
#' \item{X44}{Solid waste (T, F);}
#' \item{X45}{Liquid waste (T, F);}
#' \item{X46}{Adjacent commercial use (T, F);}
#' \item{X47}{Adjacent residential use (T, F);}
#' \item{X48}{Adjacent industrial use (T, F);}
#' \item{X49}{Land uses changes (T, F);}
#' \item{X50}{Room metering - measurement of changes (T, F);}
#' \item{X51}{Room metering - operator error (T, F);}
#' \item{X52}{Lack of standard dryer quality (T, F);}
#' \item{X53}{Disturbance in the electricity flow of the dryer (T, F);}
#' \item{X54}{Fire dryer heaters (T, F);}
#' \item{X55}{Leakage of tank (T, F);}
#' \item{X56}{Adjacent tanks (T, F);}
#' \item{X57}{Dispenser leakage and damage (T, F);}
#' \item{X58}{Disregarding dispenser safety signs (T, F);}
#' \item{X59}{Dispenser malfunction (T, F);}
#' \item{X60}{Improper management performance (T, F);}
#' \item{AdjacentLandUses}{(T, F);}
#' \item{AnticipatedEvents}{(T, F);}
#' \item{ChemicalContaminants}{(T, F);}
#' \item{ClimateChanges}{(T, F);}
#' \item{Dispenser}{(T, F);}
#' \item{Dryer}{(T, F);}
#' \item{EnvironmentChanges}{(T, F);}
#' \item{Exhaustion}{(T, F);}
#' \item{FailureToInspectAndOperateEquipment}{(T, F);}
#' \item{FortuitousEvents}{(T, F);}
#' \item{HearingLoss}{(T, F);}
#' \item{HumanReasons}{(T, F);}
#' \item{ImproperOperatorPerformance}{(T, F);}
#' \item{InadequateTraining}{(T, F);}
#' \item{LeakOfCNG}{(T, F);}
#' \item{Lighting}{(T, F);}
#' \item{MilitaryIncidents}{(T, F);}
#' \item{NaturalDisasters}{(T, F);}
#' \item{ProcessProblems}{(T, F);}
#' \item{RoomMetering}{(T, F);}
#' \item{Storage}{(T, F);}
#' \item{Stress}{(T, F);}
#' \item{TankStructure}{(T, F);}
#' \item{Temperature}{(T, F);}
#' \item{Wastes}{(T, F);}
#' \item{WindSpeed}{(T, F);}
#' }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords ReverseTree
#' @importClassesFrom bnlearn bn.fit
#' @references Abbasi Kharajou, B., Ahmadi, H., Rafiei, M., & Moradi Hanifi, S. (2024). Quantitative risk estimation of CNG station by using fuzzy bayesian networks and consequence modeling. Scientific Reports, 14(1), 4266.
"cng"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.