R/corrosion.R

#' corrosion Bayesian Network
#'
#' Dynamic Bayesian network model to study under-deposit corrosion.
#'
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network to understand different risk factors and their interdependencies in under-deposit corrosion and how the interaction of these risk factors leads to asset failure due to under-deposit corrosion. Probabilities were given within the referenced paper. The vertices are:
#' \describe{
#'   \item{BurstPressure}{(High, Low);}
#'   \item{Chloride}{(High, Moderate, Low);}
#'   \item{DefectDepth}{(Yes, No);}
#'   \item{DefectLength}{(Yes, No);}
#'   \item{FlowVelocity}{(High, Moderate, Low);}
#'   \item{InorganicDeposits}{(Absent, Present);}
#'   \item{MEG}{(Absent, Present);}
#'   \item{MixedDeposits}{(Absent, Present);}
#'   \item{OD}{(High, Low);}
#'   \item{OperatingPressure}{(High, Moderate, Low);}
#'   \item{OperatingTemperature}{(High, Moderate, Low);}
#'   \item{OrganicDeposits}{(Absent, Present);}
#'   \item{PartialPressureCO2}{(High, Moderate, Low);}
#'   \item{pH}{(Acid, Neutral, Basic);}
#'   \item{PipeFailure}{(Yes, No);}
#'   \item{ShearingForce}{(High, Moderate, Low);}
#'   \item{SolidDeposits}{(High, Moderate, Low);}
#'   \item{SteelGrade}{(High, Low);}
#'   \item{SuspendedDeposits}{(High, Moderate, Low);}
#'   \item{UDCCorrRate}{(High, Moderate, Low);}
#'   \item{UnderDepositGalvanicCell}{(Poor, Fair, Good, Excellent);}
#'   \item{WallThicknessLoss}{(Yes, No).}
#' }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords NULL
#' @importClassesFrom bnlearn bn.fit
#' @references Dao, U., Sajid, Z., Khan, F., & Zhang, Y. (2023). Dynamic Bayesian network model to study under-deposit corrosion. Reliability Engineering & System Safety, 237, 109370.
"corrosion"

Try the bnRep package in your browser

Any scripts or data that you put into this service are public.

bnRep documentation built on April 12, 2025, 1:13 a.m.