R/covid3.R

#' covid Bayesian Networks
#'
#'
#' Uncovering hidden and complex relations of pandemic dynamics using an AI driven system.
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network to classify the severity of covid-19 given different symptoms (Generic BN). The probabilities were available from a repository. The vertices are:
#' \describe{
#' \item{CovidSeverity}{(1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6);}
#' \item{Cough}{(1. 0, 2. 1);}
#' \item{Diarrhea}{(1. 0, 2. 1);}
#' \item{Fatigue}{(1. 0, 2. 1);}
#' \item{Fever}{(1. 0, 2. 1);}
#' \item{Headache}{(1. 0, 2. 1);}
#' \item{LossOfSmell}{(1. 0, 2. 1);}
#' \item{LossOfTaste}{(1. 0, 2. 1);}
#' \item{MuscleSore}{(1. 0, 2. 1);}
#' \item{RunnyNose}{(1. 0, 2. 1);}
#' \item{Sob}{(1. 0, 2. 1);}
#' \item{SoreThroat}{(1. 0, 2. 1);}
#'  }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords NULL
#' @importClassesFrom bnlearn bn.fit
#' @references Demirbaga, U., Kaur, N., & Aujla, G. S. (2024). Uncovering hidden and complex relations of pandemic dynamics using an AI driven system. Scientific Reports, 14(1), 15433.
"covid3"

Try the bnRep package in your browser

Any scripts or data that you put into this service are public.

bnRep documentation built on April 12, 2025, 1:13 a.m.