Nothing
#' covid Bayesian Networks
#'
#'
#' Uncovering hidden and complex relations of pandemic dynamics using an AI driven system.
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network to classify the severity of covid-19 given different symptoms (Generic BN). The probabilities were available from a repository. The vertices are:
#' \describe{
#' \item{CovidSeverity}{(1. 1, 2. 2, 3. 3, 4. 4, 5. 5, 6. 6);}
#' \item{Cough}{(1. 0, 2. 1);}
#' \item{Diarrhea}{(1. 0, 2. 1);}
#' \item{Fatigue}{(1. 0, 2. 1);}
#' \item{Fever}{(1. 0, 2. 1);}
#' \item{Headache}{(1. 0, 2. 1);}
#' \item{LossOfSmell}{(1. 0, 2. 1);}
#' \item{LossOfTaste}{(1. 0, 2. 1);}
#' \item{MuscleSore}{(1. 0, 2. 1);}
#' \item{RunnyNose}{(1. 0, 2. 1);}
#' \item{Sob}{(1. 0, 2. 1);}
#' \item{SoreThroat}{(1. 0, 2. 1);}
#' }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords NULL
#' @importClassesFrom bnlearn bn.fit
#' @references Demirbaga, U., Kaur, N., & Aujla, G. S. (2024). Uncovering hidden and complex relations of pandemic dynamics using an AI driven system. Scientific Reports, 14(1), 15433.
"covid3"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.