R/fingermarks1.R

#' fingermarks Bayesian Networks
#'
#'
#' Using case specific experiments to evaluate fingermarks on knives given activity level propositions.
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network for the evaluation of fingermarks given activity level propositions. The probabilities were given within the referenced paper. The vertices are:
#' \describe{
#' \item{C1}{Propositions (Hp, Hd);}
#' \item{C2}{Suspect stabbed the victime with the knife (True, False);}
#' \item{C3}{Suspect cut food with the knife (True, False);}
#' \item{C4}{Marks on handle - stabbing (FM S present, FM S absent);}
#' \item{C5}{Marks on back - stabbing (FM S present, FM S absent);}
#' \item{C6}{Marks on blade - stabbing (FM S present, FM S absent);}
#' \item{C7}{Marks on handle - cutting (FM S present, FM S absent);}
#' \item{C8}{Marks on back - cutting (FM S present, FM S absent);}
#' \item{C9}{Marks on blade - cutting (FM S present, FM S absent);}
#' \item{C10}{Findings - Marks on handle (FM S present, FM S absent);}
#' \item{C11}{Findings - Marks on blade (FM S present, FM S absent);}
#' \item{C12}{Findings - Marks on back (FM S present, FM S absent);}
#'  }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords NULL
#' @importClassesFrom bnlearn bn.fit
#' @references de Ronde, A., Kokshoorn, B., de Puit, M., & de Poot, C. J. (2021). Using case specific experiments to evaluate fingermarks on knives given activity level propositions. Forensic Science International, 320, 110710.
"fingermarks1"

Try the bnRep package in your browser

Any scripts or data that you put into this service are public.

bnRep documentation built on April 12, 2025, 1:13 a.m.