Nothing
#' gonorrhoeae Bayesian Network
#'
#'
#' Policy, practice, and prediction: model-based approaches to evaluating N. gonorrhoeae antibiotic susceptibility test uptake in Australia.
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network to simulate the clinician-patient dynamics influencing antibiotic susceptibility test initiation. The probabilities were given within the referenced paper. The vertices are:
#' \describe{
#' \item{ASTTest}{(Initiated, Not initiated);}
#' \item{ClinicianExperience}{(Experienced, Unexperienced);}
#' \item{EpidemiologicalFactors}{(High risk group, Low risk group);}
#' \item{InitialTreatmentFailure}{(Treatment success, Treatment failure);}
#' \item{MedicationAdherence}{(Proper Adherence, Improper Adherence);}
#' \item{NumberPartners}{(One, Two to five, More than six);}
#' \item{PastDiagnoses}{(One, Two to four, five to nine, More than ten);}
#' \item{PersistingSymptoms}{(Symptoms persist, Symptoms resolve);}
#' \item{SexualOrientation}{(Heterosexual, Homosexual);}
#' \item{UnpromptedTest}{(Initiated, Not initiated);}
#' }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords ReverseTree
#' @importClassesFrom bnlearn bn.fit
#' @references Do, P. C., Assefa, Y. A., Batikawai, S. M., Abate, M. A., & Reid, S. A. (2024). Policy, practice, and prediction: model-based approaches to evaluating N. gonorrhoeae antibiotic susceptibility test uptake in Australia. BMC Infectious Diseases, 24(1), 498.
"gonorrhoeae"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.