Nothing
#' metal Bayesian Network
#'
#' Bayesian belief network modeling of accident occurrence in metal lathe machining operations.
#'
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network to model the uncertainty surrounding the occurrence of a fly-out accident during metal lathe machining operations and its corresponding consequences. Probabilities were given within the referenced paper. The vertices are:
#' \describe{
#' \item{CAF}{Chuck association fault (Okay, Faulty);}
#' \item{WHF}{Workpiece holding failure (N-Fail, FLRE);}
#' \item{TPF}{Tool-post fault (Okay, Faulty);}
#' \item{CF}{Coolant fault (Okay, Faulty);}
#' \item{OS}{Operating speed (Proper, Improper);}
#' \item{SGF}{Safety guards faul (Okay, Faulty);}
#' \item{IFR}{Wrong feed rate (HR, HE);}
#' \item{FlyOutAccident}{(Fatal, Major, Minor).}
#' }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords ReverseNaiveBayes
#' @importClassesFrom bnlearn bn.fit
#' @references Akinyemi, O. O., Adeyemi, H. O., Olatunde, O. B., Folorunsho, O., & Musa, M. B. (2022). Bayesian belief network modeling of accident occurrence in metal lathe machining operations. Mindanao Journal of Science and Technology, 20(2).
"metal"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.