R/onlinerisk.R

#' onlinerisk Bayesian Network
#'
#' Online risk modeling of autonomous marine systems: Case study of autonomous operations under sea ice.
#'
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network to develop online risk models for an autonomous marine system. Probabilities were given in an associated GitHub repository. The vertices are:
#' \describe{
#'   \item{Acoustic_Link_Quality}{(Acceptable, Unacceptable);}
#'   \item{Acoustic_Link_Quality_buoy}{(Acceptable, Unacceptable);}
#'   \item{Altitude_of_AUV}{(High, Medium, Low);}
#'   \item{Control_algorith_is_flawed}{(Acceptable, Unacceptable);}
#'   \item{Copy_2_of_Control_algorith_is_flawed}{(Acceptable, Unacceptable);}
#'   \item{Copy_2_SoftwareFailure}{(Yes, No);}
#'   \item{Copy_of_Air_temperature}{(Yes, No);}
#'   \item{Copy_of_Control_algorith_is_flawed}{(Acceptable, Unacceptable);}
#'   \item{Copy_of_Environmental_constraint}{(High, Medium, Low);}
#'   \item{Copy_of_Flawed_algorithm}{(Acceptable, Unacceptable);}
#'   \item{Copy_of_Operator_effectiveness}{(High, Medium, Low);}
#'   \item{Copy_of_Research_vessel_effectiveness}{(High, Medium, Low);}
#'   \item{Copy_of_RIF2Waypoint}{(Yes, No);}
#'   \item{Copy_of_Salvage}{(Yes, No);}
#'   \item{Copy_of_SoftwareFailure}{(Yes, No);}
#'   \item{Copy_of_Strong_wind}{(Yes, No);}
#'   \item{Copy_of_Training_level}{(High, Medium, Low);}
#'   \item{Copy_of_Weather_condition}{(Good, Poor);}
#'   \item{Copy_RIF5}{(Yes, No);}
#'   \item{Current_speed}{(High, Medium, Low);}
#'   \item{Depth_of_AUV}{(High, Medium, Low);}
#'   \item{Difficulty_of_AUV_salvage}{(High, Medium, Low);}
#'   \item{Difficulty_of_salvage_operation}{(High, Medium, Low);}
#'   \item{Difficulty_to_pinpoint_the_vehicle}{(High, Medium, Low);}
#'   \item{Dist_to_home}{(High, Medium, Low);}
#'   \item{Environmental_complexity}{(High, Medium, Low);}
#'   \item{Failure_of_ADCP_DVL}{(Acceptable, Unacceptable);}
#'   \item{Failure_of_CTD_sensor}{(Acceptable, Unacceptable);}
#'   \item{Failure_of_IMU_module}{(Acceptable, Unacceptable);}
#'   \item{Failure_of_temperature_sensor}{(Acceptable, Unacceptable);}
#'   \item{Fins}{(Reliable, Failure);}
#'   \item{Flawed_algorithm_of_waypoint_generation}{(Acceptable, Unacceptable);}
#'   \item{GNSS_accuracy}{(Acceptable, Unacceptable);}
#'   \item{H1}{(Yes, No);}
#'   \item{H2}{(Yes, No);}
#'   \item{H5}{(Yes, No);}
#'   \item{H6}{(Yes, No);}
#'   \item{H7}{(Yes, No);}
#'   \item{Ice_concentration}{(High, Medium, Low);}
#'   \item{Ice_Environment}{(Good, Poor);}
#'   \item{Ice_Ruggnes}{(High, Medium, Low);}
#'   \item{Ice_thickness}{(High, Medium, Low);}
#'   \item{Improper_handling_of_navigation_errors}{(Yes, No);}
#'   \item{InaccurateWaypoint}{(Yes, No);}
#'   \item{Loss_of_AUV}{(Loss, Damage, No);}
#'   \item{Loss_of_mission}{(Yes, No);}
#'   \item{Multipath_From_Ice}{(Good, Medium, Poor);}
#'   \item{Position_Measurement_Quality}{(Yes, No);}
#'   \item{Power_capacity}{(High, Medium, Low);}
#'   \item{Power_system}{(Yes, No);}
#'   \item{Propulsion_system_fails_to_provide_necessary_motion}{(Yes, No);}
#'   \item{Range_to_buoy}{(Long, Medium, Close);}
#'   \item{Reliability_GPS_Module}{(Reliable, Failure);}
#'   \item{Reliability_of_acoustic_module_in_AUV}{(Reliable, Failure);}
#'   \item{Reliability_of_the_propulsion_system}{(Reliable, Failure);}
#'   \item{ReliabilityAcousticNavigation}{(Reliable, Failure);}
#'   \item{RIF_Range_Quality}{(Yes, No);}
#'   \item{RIF2Propulsion}{(Yes, No);}
#'   \item{RIF2Waypoint}{(Yes, No);}
#'   \item{RIF3}{(Yes, No);}
#'   \item{RIF3Collision}{(Yes, No);}
#'   \item{RIF3Inaccurate}{(Yes, No);}
#'   \item{RIF4}{(Yes, No);}
#'   \item{RIF5}{(Yes, No);}
#'   \item{RSSI_commu}{(Acceptable, Unacceptable);}
#'   \item{RSSI_ranging}{(Acceptable, Unacceptable);}
#'   \item{SIL_commu}{(Acceptable, Unacceptable);}
#'   \item{SIL_ranging}{(Acceptable, Unacceptable);}
#'   \item{SoftwareFailure}{(Yes, No);}
#'   \item{Speed_of_AUV}{(High, Medium, Low);}
#'   \item{Steering_system_fails_to_provide_necessary_motion}{(Yes, No);}
#'   \item{Time_left_to_salvage_the_vehicle_if_it_losts}{(Plenty, Enough, Not Enough);}
#'   \item{Tool_effectiveness}{(High, Medium, Low);}
#'   \item{UCA17_N_1}{(Yes, No);}
#'   \item{UCA17_P_1}{(Yes, No);}
#'   \item{UCA18_N_1}{(Yes, No);}
#'   \item{UCA18_P_1}{(Yes, No);}
#'   \item{UCA5_P_1}{(Yes, No);}
#'   \item{UCA6_N_1}{(Yes, No);}
#'   \item{UCA6_N_2}{(Yes, No);}
#'   \item{UCA6_N_3}{(Yes, No);}
#'   \item{Vessel_constraint}{(High, Medium, Low);}
#'   \item{Visibility}{(High, Medium, Low);}
#'   \item{Water_Environment}{(Good, Poor);}
#'    }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords NULL
#' @importClassesFrom bnlearn bn.fit
#' @references Yang, R., Bremnes, J. E., & Utne, I. B. (2023). Online risk modeling of autonomous marine systems: case study of autonomous operations under sea ice. Ocean Engineering, 281, 114765.
"onlinerisk"

Try the bnRep package in your browser

Any scripts or data that you put into this service are public.

bnRep documentation built on April 12, 2025, 1:13 a.m.