R/rockquality.R

#' rockquality Bayesian Network
#'
#' A probability prediction method for the classification of surrounding rock quality of tunnels with incomplete data using Bayesian networks.
#'
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network  to predict the probability for the classification of surrounding rock quality of tunnel with incomplete data. Probabilities were given within the referenced paper. The vertices are:
#' \describe{
#'   \item{BQ}{Basic quality of rock mass  (Num1, Num2, Num3, Num4, Num5);}
#'   \item{Groundwater}{(DryWet, MoistDripping, RainlikeDripping, TubularGushing);}
#'   \item{InSituStress}{(Low, Medium, High, ExtremelyHigh);}
#'   \item{RockHardness}{(Hard, SlightlyHard, SlightlySoft, Soft, ExtremelySoft);}
#'   \item{RockMassIntegrity}{(Complete, SlightlyComplete, SlightlyBroken, Broken, ExtremelyBroken);}
#'   \item{RockMassStructure}{(State1, State2, State3, State4, State5);}
#'   \item{RockQuality}{(I, II, III, IV, V);}
#'   \item{StructuralPlaneIntegrity}{(Good, Ordinary, Bad, VeryBad);}
#'   \item{WeatheringDegree}{(Fresh, Slight, Medium, Severe, Extreme).}
#'   }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#'@keywords ReverseTree
#' @importClassesFrom bnlearn bn.fit
#' @references Ma, J., Li, T., Li, X., Zhou, S., Ma, C., Wei, D., & Dai, K. (2022). A probability prediction method for the classification of surrounding rock quality of tunnels with incomplete data using Bayesian networks. Scientific Reports, 12(1), 19846.
"rockquality"

Try the bnRep package in your browser

Any scripts or data that you put into this service are public.

bnRep documentation built on April 12, 2025, 1:13 a.m.