Nothing
#' safespeeds Bayesian Network
#'
#'
#' Modelling driver expectations for safe speeds on freeway curves using Bayesian belief networks.
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network to model driver expectations using measured speeds in 153 curves and data on the characteristics of the curve approaches. The probabilities were given in the referenced paper. The vertices are:
#' \describe{
#' \item{Angle}{(A010-100, A100-200, A200-310);}
#' \item{CurveSign}{(Present, Not Present);}
#' \item{Direction}{(Left, Right);}
#' \item{ExpectedSafeSpeed}{(S060-069, S070-079, S080-089, S090-099, S100-109, S110-119, S120-129, S130-140);}
#' \item{NumberOfLanes}{(One, Two, Three, Four);}
#' \item{PrecedingCurveSpeed}{(S060-080, S080-100, S100-120, S120-140, Tangent);}
#' \item{PrecedingRoadwayType}{(Connector Road, Deceleration Lane, Fork, Main Carriageway, Merge, Weaving Section);}
#' \item{SpeedSign}{(AdvSpeed50, AdvSpeed60, AdvSpeed70, AdvSpeed80, AdvSpeed90, SpeedLimit50, SpeedLimit60, SpeedLimit70, SpeedLimit80, SpeedLimit90, NoSpeedLimit);}
#' \item{WarningSign}{(Present, Not Present);}
#' }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords TAN
#' @importClassesFrom bnlearn bn.fit
#' @references Vos, J., Farah, H., & Hagenzieker, M. (2024). Modelling driver expectations for safe speeds on freeway curves using Bayesian belief networks. Transportation Research Interdisciplinary Perspectives, 27, 101178.
"safespeeds"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.