Nothing
#' theft Bayesian Networks
#'
#' Evaluating methods for setting a prior probability of guilt.
#'
#' @usage NULL
#'
#' @format
#' A discrete Bayesian network representing a legal scenario. Probabilities were given within the referenced paper. The vertices are:
#' \describe{
#' \item{EredHanded}{(F, T);}
#' \item{EseenCS}{(F, T);}
#' \item{EWallet}{(F, T);}
#' \item{Guilty}{(F, T);}
#' }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords NaiveBayes
#' @importClassesFrom bnlearn bn.fit
#' @references van Leeuwen, L., Verheij, B., Verbrugge, R., & Renooij, S. (2023). Evaluating Methods for Setting a Prior Probability of Guilt. In Legal Knowledge and Information Systems (pp. 63-72). IOS Press.
"theft1"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.