R/turbine1.R

#' turbine Bayesian Networks
#'
#' Potential use of Bayesian Networks for estimating relationship among rotational dynamics of floating offshore wind turbine tower in extreme environmental conditions.
#' @usage NULL
#'
#' @format
#' A Gaussian Bayesian network for the estimation of technical relationships among structural dynamic responses of the tower of a floating spar-type offshore wind turbine. Probabilities were given within the referenced paper. The vertices are:
#' \describe{
#'   \item{PtfmPitch}{Platform pitch tilt angular (rotational) displacement;}
#'   \item{PtfmRoll}{Platform roll tilt angular (rotational) displacement;}
#'   \item{PtfmSurge}{Platform horizontal surge (translational) displacement;}
#'   \item{PtfmSway}{Platform horizontal sway (translational) displacement;}
#'   \item{TTDspFA}{Tower-top/yaw bearing fore-aft (translational) deflection (relative to the undeflected position);}
#'   \item{TTDspPtch}{Tower-top/yaw bearing angular (rotational) pitch deflection (relative to the undeflected position);}
#'   \item{TTDspRoll}{Tower-top/yaw bearing angular (rotational) roll deflection (relative to the undeflected position);}
#'   \item{TTDspSS}{Tower-top/yaw bearing side-to-side (translation) deflection (relative to the undeflected position);}
#'   \item{TwrBsFxt}{Tower base fore-aft shear force;}
#'   \item{TwrBsFyt}{Tower base side-to-side shear force;}
#'   \item{TwrBsMxt}{Nonrotating tower-top/yaw bearing roll moment;}
#'   \item{TwrBsMyt}{Nonrotating tower-top/yaw bearing pitch moment;}
#'   \item{YawBrFxp}{Tower-top/yaw bearing fore-aft (nonrotating) shear force;}
#'   \item{YawBrFyp}{Tower-top/yaw bearing side-to-side (nonrotating) shear force;}
#'   \item{YawBrMxp}{Nonrotating tower-top/yaw bearing roll moment;}
#'   \item{YawBrMyp}{Nonrotating tower-top/yaw bearing pitch moment;}
#'    }
#'
#' @return An object of class \code{bn.fit}. Refer to the documentation of \code{bnlearn} for details.
#' @keywords GBN
#' @importClassesFrom bnlearn bn.fit
#' @references Rostam-Alilou, A. A., Zhang, C., Salboukh, F., & Gunes, O. (2022). Potential use of Bayesian Networks for estimating relationship among rotational dynamics of floating offshore wind turbine tower in extreme environmental conditions. Ocean Engineering, 244, 110230.
"turbine1"

Try the bnRep package in your browser

Any scripts or data that you put into this service are public.

bnRep documentation built on April 12, 2025, 1:13 a.m.