| booami_sim | R Documentation |
A simulated dataset with predictors X1...X25 and a continuous
outcome y. Missing values are generated under a MAR mechanism in the
predictors (covariates) only; the outcome y is fully observed (no NAs).
The object is a data.frame and carries attributes describing the
data-generating process (true coefficients, informative indices, etc.).
A data frame with 300 rows and 26 variables:
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric
numeric outcome (fully observed)
Generated by simulate_booami_data with typical settings (see
?simulate_booami_data). The following attributes are attached to
booami_sim:
"true_beta": numeric length-25 vector of true coefficients
(non-zeros in positions 1-5).
"informative": integer vector 1:5.
"type": "gaussian".
"corr_structure": "all_ar1"; "rho": 0.3.
"intercept": 1; "noise_sd": 1 (Gaussian; NA otherwise).
"mar_scale": TRUE; "keep_mar_drivers": TRUE.
simulate_booami_data,
impu_boost, cv_boost_raw, cv_boost_imputed
## \donttest{
utils::data(booami_sim)
dim(booami_sim)
mean(colSums(is.na(booami_sim)) > 0) # fraction of columns with any NAs
sum(is.na(booami_sim$y)) # should be 0
head(attr(booami_sim, "true_beta"))
attr(booami_sim, "informative")
## }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.