NormalInverseGaussian | R Documentation |
A R6 class to represent a normal-inverse Gaussian distribution.
See Wikipedia.
mu
Get or set the value of mu
.
alpha
Get or set the value of alpha
.
beta
Get or set the value of beta
.
delta
Get or set the value of delta
.
new()
New normal-inverse Gaussian distribution.
NormalInverseGaussian$new(mu, alpha, beta, delta)
mu
location parameter
alpha
tail heaviness parameter, >0
beta
asymmetry parameter
delta
scale parameter, >0
A NormalInverseGaussian
object.
d()
Density function of the normal-inverse Gaussian distribution.
NormalInverseGaussian$d(x, log = FALSE)
x
numeric vector
log
Boolean, whether to return the logarithm of the density
The density or the log-density evaluated at x
.
p()
Cumulative distribution function of the normal-inverse Gaussian distribution.
NormalInverseGaussian$p(q)
q
numeric vector of quantiles
The cumulative probabilities corresponding to q
, with two
attributes (see the Note).
q()
Quantile function of the normal-inverse Gaussian distribution.
NormalInverseGaussian$q(p, bounds = NULL)
p
numeric vector of probabilities
bounds
bounds enclosing the quantiles to be found (see the
Note), or NULL
for automatic bounds
The quantiles corresponding to p
.
r()
Sampling from the normal-inverse Gaussian distribution.
NormalInverseGaussian$r(n)
n
number of simulations
A numeric vector of length n
.
mean()
Mean of the normal-inverse Gaussian distribution.
NormalInverseGaussian$mean()
The mean of the normal-inverse Gaussian distribution.
sd()
Standard deviation of the normal-inverse Gaussian distribution.
NormalInverseGaussian$sd()
The standard deviation of the normal-inverse Gaussian distribution.
variance()
Variance of the normal-inverse Gaussian distribution.
NormalInverseGaussian$variance()
The variance of the normal-inverse Gaussian distribution.
skewness()
Skewness of the normal-inverse Gaussian distribution.
NormalInverseGaussian$skewness()
The skewness of the normal-inverse Gaussian distribution.
kurtosis()
Kurtosis of the normal-inverse Gaussian distribution.
NormalInverseGaussian$kurtosis()
The kurtosis of the normal-inverse Gaussian distribution.
kurtosisExcess()
Kurtosis excess of the normal-inverse Gaussian distribution.
NormalInverseGaussian$kurtosisExcess()
The kurtosis excess of the normal-inverse Gaussian distribution.
clone()
The objects of this class are cloneable with this method.
NormalInverseGaussian$clone(deep = FALSE)
deep
Whether to make a deep clone.
The cumulative distribution function is evaluated by integrating the
density function (in C++). Its returned value has two attributes: a
numeric vector "error_estimate"
and an integer vector
"error_code"
. The error code is 0 if no problem is detected. If an
error code is not 0, a warning is thrown. The quantile function is
evaluated by root-finding and then the user must provide some bounds
enclosing the values of the quantiles or choose the automatic bounds.
A maximum number of iterations is fixed in the root-finding algorithm.
If it is reached, a warning is thrown.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.