linear.approx | R Documentation |
This function takes a bootstrap object and for each bootstrap replicate it calculates the linear approximation to the statistic of interest for that bootstrap sample.
linear.approx(boot.out, L = NULL, index = 1, type = NULL,
t0 = NULL, t = NULL, ...)
boot.out |
An object of class |
L |
A vector containing the empirical influence values for the statistic of
interest. If it is not supplied then |
index |
The index of the variable of interest within the output of
|
type |
This gives the type of empirical influence values to be calculated. It is
not used if |
t0 |
The observed value of the statistic of interest. The input value is used only
if one of |
t |
A vector of bootstrap replicates of the statistic of interest. If |
... |
Any extra arguments required by |
The linear approximation to a bootstrap replicate with frequency vector f
is given by t0 + sum(L * f)/n
in the one sample with an easy extension
to the stratified case. The frequencies are found by calling boot.array
.
A vector of length boot.out$R
with the linear approximations to the
statistic of interest for each of the bootstrap samples.
Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods and Their Application. Cambridge University Press.
boot
, empinf
, control
# Using the city data let us look at the linear approximation to the
# ratio statistic and its logarithm. We compare these with the
# corresponding plots for the bigcity data
ratio <- function(d, w) sum(d$x * w)/sum(d$u * w)
city.boot <- boot(city, ratio, R = 499, stype = "w")
bigcity.boot <- boot(bigcity, ratio, R = 499, stype = "w")
op <- par(pty = "s", mfrow = c(2, 2))
# The first plot is for the city data ratio statistic.
city.lin1 <- linear.approx(city.boot)
lim <- range(c(city.boot$t,city.lin1))
plot(city.boot$t, city.lin1, xlim = lim, ylim = lim,
main = "Ratio; n=10", xlab = "t*", ylab = "tL*")
abline(0, 1)
# Now for the log of the ratio statistic for the city data.
city.lin2 <- linear.approx(city.boot,t0 = log(city.boot$t0),
t = log(city.boot$t))
lim <- range(c(log(city.boot$t),city.lin2))
plot(log(city.boot$t), city.lin2, xlim = lim, ylim = lim,
main = "Log(Ratio); n=10", xlab = "t*", ylab = "tL*")
abline(0, 1)
# The ratio statistic for the bigcity data.
bigcity.lin1 <- linear.approx(bigcity.boot)
lim <- range(c(bigcity.boot$t,bigcity.lin1))
plot(bigcity.lin1, bigcity.boot$t, xlim = lim, ylim = lim,
main = "Ratio; n=49", xlab = "t*", ylab = "tL*")
abline(0, 1)
# Finally the log of the ratio statistic for the bigcity data.
bigcity.lin2 <- linear.approx(bigcity.boot,t0 = log(bigcity.boot$t0),
t = log(bigcity.boot$t))
lim <- range(c(log(bigcity.boot$t),bigcity.lin2))
plot(bigcity.lin2, log(bigcity.boot$t), xlim = lim, ylim = lim,
main = "Log(Ratio); n=49", xlab = "t*", ylab = "tL*")
abline(0, 1)
par(op)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.