View source: R/sim_vecm_ardl.R
| sim_vecm_ardl | R Documentation |
Generate data from a VECM/ARDL equation
sim_vecm_ardl( nobs, case = 1, sigma.in = diag(3), gamma.in, Axx.in, ayxUC.in, ayy.in, mu.in, eta.in, azeroy.in = 0, aoney.in = 0, burn.in, seed.in = NULL )
nobs |
number of observations. |
case |
case related to intercept and trend |
sigma.in |
error covariance matrix. |
gamma.in |
list of short-run parameter matrices |
Axx.in |
long-run relationships between the independent variables |
ayxUC.in |
long-run unconditional relationship between dependent and independent variables, \mathbf a_{yx}^{(UC)} . The second component ayxC, derived from conditioning, is calculated as\mathbf a_{yx}^{(C)}= - \boldsymbolω'\mathbf A_{xx} |
ayy.in |
long-run relationship for the dependent variable a_{yy} |
mu.in |
VAR intercept vector |
eta.in |
VAR trend vector |
azeroy.in |
Conditional ARDL intercept. Overridden if CASE I or CASE II |
aoney.in |
Conditional ARDL trend. Overridden if CASE IV |
burn.in |
burn-in number of observations |
seed.in |
optional seed number for random error generation. |
A list that includes
dims: a vector with the dataset dimension
case: the case given as input
data: the generated data
diffdata: the data first difference
ut: the generated random error matrix.
sigma: the error covariance matrix \boldsymbolΣ.
omega: the \boldsymbolω vector of parameters generated via conditioning
At: the conditional long-run parameter matrix \tilde{\mathbf A}
ayx1: the unconditional subvector of the ARDL equation \mathbf a_{y.x}^{UC}
ayx: the conditional subvector of the ARDL equation a_{y.x}=a_{y.x}^{UC}-ω'A_{xx}
gammalist: the list of unconditional \boldsymbolΓ_j parameter matrices
psilist: the list of conditional \boldsymbolψ_{y.x,j} parameter matrices
azero: the unconditional VECM intercept
azero.c: the conditional VECM intercept
interc.ardl: the conditional ARDL intercept
aone: the unconditional VECM trend
aone.c: the conditional VECM trend
interc.ardl: the conditional ARDL trend
vmu: the VAR intercept
veta: the VAR trend
#PARAMETERS
#Sigma
corrm = matrix(0, ncol = 3, nrow = 3)
corrm[2,1] = 0.25
corrm[3,1] = 0.4
corrm[3,2] = -0.25
Corrm = (corrm + t(corrm)) + diag(3)
sds = diag(c(1.3, 1.2, 1))
Sigma = (sds %*% Corrm %*% t(sds))
#Gamma
gammax=list()
gammax[[1]] = matrix(c(0.6, 0, 0.2, 0.1, -0.3, 0, 0, -0.3, 0.2), nrow = 3, ncol = 3, byrow = TRUE)
gammax[[2]] = matrix(c(0.2, 0, 0.1, 0.05, -0.15, 0, 0, 0, 0.1), nrow = 3, ncol = 3, byrow = TRUE)
#DATA GENERATION
data_sim = sim_vecm_ardl(nobs = 200,
case = 3,
sigma.in = Sigma,
gamma.in = gammax,
Axx.in = matrix(c(0.3, 0.5, 0.4, 0.3), nrow = 2, ncol = 2),
ayxUC.in = c(0.5,0.6),
ayy.in = 0.7,
mu.in = rep(0.3, 3),
eta.in = rep(0, 3),
azeroy.in = 0.4,
aoney.in = 0,
burn.in = 50,
seed.in = 10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.