Description Usage Arguments Value Author(s) See Also Examples
Analytic exact solution for OneDimensional Boussinesq Equation in a twobounded domain with two constantvalue Dirichlet Condition
1 2 3 
t 
time coordinate. 
x 
spatial coordinate. Default is

big 
maximum level of Fourier series considered. Default is 10^7. 
by 
see 
L 
length of the domain. 
h1 
water surface level at 
h2 
water surface level at 
ks 
Hydraulic conductivity 
s 
drainable pororosity (assumed to be constant) 
p 
empirical coefficient to estimate hydraulic diffusivity D=ks/(s *(p*h1+(1p)*h2)). It ranges between 0 and 1. 
Solutions for the indicated values of x
and
t
.
Emanuele Cordano
1 2 3 4 5 6 7 8 9 10 11  L < 1000
x < seq(from=0,to=L,by=L/100)
t < 4 # 4 days
h_sol0 < beq.lin(x=x,t=t*24*3600,h1=2,h2=1,ks=0.01,L=L,s=0.4,big=100,p=0.0)
h_solp < beq.lin(x=x,t=t*24*3600,h1=2,h2=1,ks=0.01,L=L,s=0.4,big=100,p=0.5)
h_sol1 < beq.lin(x=x,t=t*24*3600,h1=2,h2=1,ks=0.01,L=L,s=0.4,big=100,p=1.0)
plot(x,h_sol0,type="l",lty=1,main=paste("Water Surface Elevetion after",t,"days",sep=" "),xlab="x[m]",ylab="h[m]")
lines(x,h_solp,lty=2)
lines(x,h_sol1,lty=3)
legend("topright",lty=1:3,legend=c("p=0","p=0.5","p=1"))

Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.