pgmmRJMCMC | R Documentation |
bpgmm Model-Based Clustering Using Baysian PGMM Carries out model-based clustering using parsimonious Gaussian mixture models. MCMC are used for parameter estimation. The RJMCMC is used for model selection.
pgmmRJMCMC(X, mInit, mVec, qnew, delta = 2, ggamma = 2, burn = 20, niter = 1000, constraint = C(0, 0, 0), dVec = c(1, 1, 1), sVec = c(1, 1, 1), Mstep = 0, Vstep = 0, SCind = 0)
X |
the observation matrix with size p * m |
mInit |
the number of initial clusters |
mVec |
the range of the number of clusters |
qnew |
the number of factor for a new cluster |
delta |
scaler hyperparameters |
ggamma |
scaler hyperparameters |
burn |
the number of burn in iterations |
niter |
the number of iterations |
constraint |
the pgmm initial constraint, a vector of length three with binary entry. For example, c(1,1,1) means the fully constraint model |
dVec |
a vector of hyperparameters with length three, shape parameters for alpha1, alpha2 and bbeta respectively |
sVec |
sVec a vector of hyperparameters with length three, rate parameters for alpha1, alpha2 and bbeta respectively |
Mstep |
the indicator of whether do model selection on the number of clusters |
Vstep |
the indicator of whether do model selection on variance structures |
SCind |
the indicator of whether use split/combine step in Mstep |
library("fabMix") library("mclust") library("pgmm") library("mvtnorm") library("mcmcse") library("MASS") library("gtools") n <- 500 p <- 10 q <- 4 K <- 10 nsim <- 10 burn <- 20 qnew <- 4 Mstep <- 1 Vstep <- 1 constraint <- c(0, 0, 0) mInit <- 20 mVec <- c(1, 20) X <- t(simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data) pgmmRJMCMC(X, mInit, mVec, qnew, niter = nsim, burn = burn, constraint = constraint, Mstep = Mstep, Vstep = Vstep )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.