inst/doc/sql-backend.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  eval = FALSE
)

## ----setup--------------------------------------------------------------------
# library(brickster)
# library(DBI)
# library(dplyr)
# library(dbplyr)
# 
# # Create connection to SQL warehouse
# con <- dbConnect(
#   drv = DatabricksSQL(),
#   warehouse_id = "<your_warehouse_id>",
#   catalog = "samples"
# )

## -----------------------------------------------------------------------------
# trips <- dbGetQuery(con, "SELECT * FROM samples.nyctaxi.trips LIMIT 10")

## -----------------------------------------------------------------------------
# # List available tables
# tables <- dbListTables(con)
# 
# # Check if specific table exists
# dbExistsTable(con, "samples.nyctaxi.trips")
# dbExistsTable(con, I("samples.nyctaxi.trips"))
# dbExistsTable(con, Id("samples", "nyctaxi", "trips"))
# 
# # Get column information
# dbListFields(con, "samples.nyctaxi.trips")
# dbListFields(con, I("samples.nyctaxi.trips"))
# dbListFields(con, Id("samples", "nyctaxi", "trips"))

## -----------------------------------------------------------------------------
# # small data (150 rows)
# # generates an in-line CTAS
# dbWriteTable(
#   conn = con,
#   name = Id(catalog = "<catalog>", schema = "<schema>", table = "<table>"),
#   value = iris,
#   overwrite = TRUE
# )
# 
# # bigger data (4 million rows)
# # writes parquet files to volume then CTAS
# iris_big <- sample_n(iris, replace = TRUE, size = 4000000)
# 
# dbWriteTable(
#   conn = con,
#   name = Id(catalog = "<catalog>", schema = "<schema>", table = "<table>"),
#   value = iris_big,
#   overwrite = TRUE,
#   staging_volume = "/Volumes/<catalog>/<schema>/<volume>/..." # or inherited from connection
#   progress = TRUE
# )
# 

## -----------------------------------------------------------------------------
# # Connect to existing tables
# tbl(con, "samples.nyctaxi.trips")
# tbl(con, I("samples.nyctaxi.trips"))
# tbl(con, Id("samples", "nyctaxi", "trips"))
# tbl(con, in_catalog("samples", "nyctaxi", "trips"))

## -----------------------------------------------------------------------------
# # Filter and select (translated to SQL)
# long_trips <- tbl(con, "samples.nyctaxi.trips") |>
#   filter(trip_distance > 10) |>
#   select(
#     tpep_pickup_datetime,
#     tpep_dropoff_datetime,
#     trip_distance,
#     fare_amount
#   )
# 
# # View the generated SQL (without executing)
# show_query(long_trips)
# 
# # Execute and collect results
# long_trips |> collect()

## -----------------------------------------------------------------------------
# # Customer summary statistics
# trips_summary <- tbl(con, "samples.nyctaxi.trips") |>
#   group_by(pickup_zip) %>%
#   summarise(
#     trip_count = n(),
#     total_fare_amount = sum(fare_amount, na.rm = TRUE),
#     total_trip_distance = sum(trip_distance, na.rm = TRUE),
#     avg_fare_amount = mean(fare_amount, na.rm = TRUE)
#   ) |>
#   arrange(desc(avg_fare_amount))
# 
# # Execute to get the 20 most expensive pickip zip codes with more than 30 trips
# top_zipz <- trips_summary |>
#   filter(trip_count > 20) |>
#   head(20) |>
#   collect()

## -----------------------------------------------------------------------------
# iris_remote <- copy_to(con, iris, "iris_table", temporary = FALSE, overwrite = TRUE)

Try the brickster package in your browser

Any scripts or data that you put into this service are public.

brickster documentation built on Sept. 9, 2025, 5:33 p.m.