brif | R Documentation |
Depending on the arguments supplied, the function brif.formula
, brif.default
or brif.trainpredict
will be called.
brif(x, ...)
x |
a data frame or a |
... |
arguments passed on to |
a data frame, a vector or a list. If newdata
is supplied, prediction results for newdata
will be returned in a data frame or a vector, depending on the problem type (classification or regression) and the type
argument; otherwise, an object of class "brif" is returned, which is to be used in the function predict.brif
for making predictions. See brif.default
for components of the "brif" object.
trainset <- sample(1:nrow(iris), 0.5*nrow(iris)) validset <- setdiff(1:nrow(iris), trainset) # Train and predict at once pred_scores <- brif(Species~., data = iris, subset = trainset, newdata = iris[validset, 1:4], type = 'score') pred_labels <- brif(Species~., data = iris, subset = trainset, newdata = iris[validset, 1:4], type = 'class') # Confusion matrix table(pred_labels, iris[validset, 5]) # Accuracy sum(pred_labels == iris[validset, 5])/length(validset) # Train using the formula format bf <- brif(Species~., data = iris, subset = trainset) # Or equivalently, train using the data.frame format bf <- brif(iris[trainset, c(5,1:4)]) # Make a prediction pred_scores <- predict(bf, iris[validset, 1:4], type = 'score') pred_labels <- predict(bf, iris[validset, 1:4], type = 'class') # Regression bf <- brif(mpg ~., data = mtcars) pred <- predict(bf, mtcars[2:11]) plot(pred, mtcars$mpg) abline(0, 1) # Optionally, delete the model object to release memory rm(list = c("bf")) gc()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.