Nothing
#' Simple Linear Algebra Functions for Statistics
#'
#' @description
#' 'broadcast' provides some simple Linear Algebra Functions for Statistics: \cr
#' `cinv()`; \cr
#' `sd_lc()`. \cr
#' \cr
#' \cr
#'
#' @param x a real symmetric positive-definite square matrix.
#' @param X a numeric (or logical) matrix of multipliers/constants
#' @param vc the variance-covariance matrix for the (correlated) random variables.
#' @param bad_rp if `vc` is not a Positive (semi-) Definite matrix,
#' give here the value to replace bad standard deviations with. \cr \cr
#'
#' @details
#' \bold{cinv()} \cr
#' `cinv()`
#' computes the Choleski inverse
#' of a real symmetric positive-definite square matrix. \cr
#' \cr
#' \bold{sd_lc()} \cr
#' Given the linear combination `X %*% b`, where:
#'
#' - `X` is a matrix of multipliers/constants;
#' - `b` is a vector of (correlated) random variables;
#' - `vc` is the symmetric variance-covariance matrix for `b`;
#'
#' `sd_lc(X, vc)`
#' computes the standard deviations for the linear combination `X %*% b`,
#' without making needless copies. \cr
#' `sd_lc(X, vc)` will use \bold{much} less memory than a base 'R' approach. \cr
#' `sd_lc(X, vc)` may possibly, but not necessarily, be faster than a base 'R' approach
#' (depending on the Linear Algebra Library used for base 'R'). \cr
#' \cr
#' \cr
#'
#'
#'
#' @returns
#' For `cinv()`: \cr
#' A matrix. \cr
#' \cr
#' For `sd_lc()`: \cr
#' A vector of standard deviations.
#' \cr
#' \cr
#'
#'
#' @seealso \link[base]{chol}, \link[base]{chol2inv}
#' @references John A. Rice (2007), \emph{Mathematical Statistics and Data Analysis} (6th Edition)
#'
#' @example inst/examples/linear_algebra_stats.R
#'
#' @name linear_algebra_stats
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.