BS | R Documentation |
Density, distribution function, quantile function and random generation for the Birnbaum-Saunders distribution with alpha (shape) and beta (scale)
dbs(x, alpha = 1, beta = 1, log = FALSE)
pbs(q, alpha = 1, beta = 1, lower.tail = TRUE, log.p = FALSE)
qbs(p, alpha = 1, beta = 1, lower.tail = TRUE, log.p = FALSE)
rbs(n, alpha = 1, beta = 1)
x,q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
alpha |
shape parameter. |
beta |
scale parameter. |
log, log.p |
logical; if |
lower.tail |
logical; if |
The Birnbaum-Saunders distribution was proposed by Birnbaum and Saunders (1969) and its probability density function and cumulative distribution function are given by
f(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2\alpha^{2}}
\left(\frac{x}{\beta}+\frac{\beta}{x}-2\right) \right]
\frac{x^{-\frac{3}{2}} (x+\beta)}{2\alpha\sqrt{\beta}}
and
F(x) = \Phi \Big[ \frac{1}{\alpha} \Big( \sqrt{\frac{x}{\beta}}-\sqrt{\frac{\beta}{x}} \Big) \Big],
where x>0
, \alpha>0
, and \beta>0
.
dbs
gives the density, pbs
gives the distribution function, qbs
gives the quantile function,
and rbs
generates random deviates.
Chanseok Park
Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions. J. Appl. Probab. 6(2): 637-652.
dbs(1.5, alpha=0.5, beta=1.5)
exp( dbs(1.5, alpha=0.5, beta=1.5, log=TRUE) )
pbs(2.5, alpha=0.5, beta=1.5)
1 - pbs(2.5, alpha=0.5,beta=1.5, lower.tail = FALSE, log.p = FALSE)
1 - exp( pbs(2.5, alpha=0.5,beta=1.5, lower.tail = FALSE, log.p = TRUE) )
qbs(0.1, alpha=0.5, beta=1.5)
qbs(0.9, alpha=0.5, beta=1.5, lower.tail = FALSE, log.p = FALSE)
qbs(log(0.1), alpha=0.5, beta=1.5, lower.tail = TRUE, log.p = TRUE)
qbs(log(0.9), alpha=0.5, beta=1.5, lower.tail = FALSE, log.p = TRUE)
rbs(n=10, alpha=0.5, beta=1.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.